Contents

Pre	eface		states and solution of DTM Source Data	xv
1	Introduction			1
	1.1	Repre	sentation of Digital Terrain Surfaces	1
		1.1.1	Representation of Terrain Surfaces	1
		1.1.2	Representation of Digital Terrain Surfaces	4
	1.2	Digita	l Terrain Models	4
		1.2.1	The Concept of Model and Mathematical Models	4
		1.2.2	The Terrain Model and the Digital Terrain Model	6
		1.2.3	Digital Elevation Models and Digital Terrain Models	7
	1.3	Digita	l Terrain Modeling	9
		1.3.1	The Process of Digital Terrain Modeling	9
		1.3.2	Development of Digital Terrain Modeling	9
	1.4	Relati	onships Between Digital Terrain Modeling and	
		Other	Disciplines	11
2	Terr	ain Des	criptors and Sampling Strategies	13
	2.1	Gener	al (Qualitative) Terrain Descriptors	13
	2.2	Nume	ric Terrain Descriptors	14
		2.2.1	Frequency Spectrum	14
		2.2.2	Fractal Dimension	15
		2.2.3	Curvature	16
		2.2.4	Covariance and Auto-Correlation	17
		2.2.5	Semivariogram	17
	2.3	Terrai	n Roughness Vector: Slope, Relief, and Wavelength	18
		2.3.1	Slope, Relief, and Wavelength as a Roughness Vector	18
		2.3.2	The Adequacy of the Terrain Roughness Vector for	
			DTM Purposes	19
		2.3.3	Estimation of Slope	20
	2.4	Theor	etical Basis for Surface Sampling	21
		2.4.1	Theoretical Background for Sampling	21
		2.4.2	Sampling from Different Points of View	22
			+ 4.2 Surface Modeling Americanter A. Classification	

Point Based Surface viedeling, ryanus of

	2.5 Sampling Strategy for Data Acquisition				
		2.5.1 Selective Sampling: Very Important Points plus			
		Other Points	24		
		2.5.2 Sampling with One Dimension Fixed: Contouring and Profiling	25		
		2.5.3 Sampling with Two Dimensions Fixed: Regular Grid and			
		Progressive Sampling	25		
		2.5.4 Composite Sampling: An Integrated Strategy	26		
	2.6	Attributes of Sampled Source Data	26		
		2.6.1 Distribution of Sampled Source Data	26		
		2.6.2 Density of Sampled Source Data	28		
		2.6.3 Accuracy of Sampled Source Data	28		
3	Tech	niques for Acquisition of DTM Source Data	31		
	3.1	Data Sources for Digital Terrain Modeling	31		
		3.1.1 The Terrain Surface as a Data Source	31		
		3.1.2 Aerial and Space Images	32		
		3.1.3 Existing Topographic Maps	34		
	3.2	Photogrammetry	35		
		3.2.1 The Development of Photogrammetry	35		
		3.2.2 Basic Principles of Photogrammetry	36		
	3.3	Radargrammetry and SAR Interferometry	39		
		3.3.1 The Principle of Synthetic Aperture			
		Radar Imaging	40		
		3.3.2 Principles of Interferometric SAR	43		
		3.3.3 Principles of Radargrammetry	48		
	3.4	Airborne Laser Scanning (LIDAR)	50		
		3.4.1 Basic Principle of Airborne Laser Scanning	53		
		3.4.2 From Laser Point Cloud to DTM	55		
	3.5	Cartographic Digitization	56		
		3.5.1 Line-Following Digitization	56		
		3.5.2 Raster Scanning	57		
	3.6	GPS for Direct Data Acquisition	58		
		3.6.1 The Operation of GPS	58		
		3.6.2 The Principles of GPS Measurement	60		
		3.6.3 The Principles of Traditional			
4		Surveying Techniques	61		
	3.7	A Comparison between DTM Data from Different Sources	62		
4	Digit	al Terrain Surface Modeling	65		
	4.1	Basic Concepts of Surface Modeling	65		
		4.1.1 Interpolation and Surface Modeling	65		
		4.1.2 Surface Modeling and DTM Networks	. 66		
		4.1.3 Surface Modeling Function: General Polynomial	66		
	4.2	Approaches for Digital Terrain Surface Modeling	67		
		4.2.1 Surface Modeling Approaches: A Classification	68		
		4.2.2 Point-Based Surface Modeling	68		

5

	4.2.3	Triangle-Based Surface Modeling	69
	4.2.4	Grid-Based Surface Modeling	70
	4.2.5	Hybrid Surface Modeling	71
4	3 The C	Continuity of DTM Surfaces	72
	4.3.1	The Characteristics of DTM Surfaces: A Classification	72
	4.3.2	Discontinuous DTM Surfaces	72
	4.3.3	Continuous DTM Surfaces	73
	4.3.4	Smooth DTM Surfaces	74
4.	4 Triang	gular Network Formation for Surface Modeling	75
	4.4.1	Triangular Regular Network Formation from Regularly Distributed Data	75
	4.4.2	Triangular Irregular Network Formation from Regularly Distributed Data	77
	4.4.3	Triangular Irregular Network Formation from Irregularly Distributed Data	79
	4.4.4	Triangular Irregular Network Formation from Specially Distributed Data	80
4.	5 Grid I	Network Formation for Surface Modeling	80
	4.5.1	Coarser Grid Network Formation from Finer Grid Data:	
		Resampling	81
	4.5.2	Grid Network Formation from Randomly	
		Distributed Data	82
	4.5.3	Grid Network Formation from Contour Data	83
G	eneration	of Triangular Irregular Networks	87
5.	1 Triang	gular Irregular Network Formation: Principles	87
	5.1.1	Approaches for Triangular Irregular Network Formation	87
	5.1.2	Principles of Triangular Irregular Network Formation	88
5.	2 Vecto	r-Based Static Delaunay Triangulation	90
	5.2.1	Selection of a Starting Point for Delaunay Triangulation	90
	5.2.2	Searching for a Point to Form a New Triangle	92
	5.2.3	The Process of Delaunay Triangulation	93
5.	.3 Vecto	r-Based Dynamic Delaunay Triangulation	94
	5.3.1	The Principle of Bowyer–Watson Algorithm for Dynamic Triangulation	94
	5.3.2	Walk-Through Algorithm for Locating the Triangle Containing a Point	95
	5.3.3	Numerical Criterion for Edge Swapping	97
	5.3.4	Removal of a Point from the Delaunay Triangulation	98
5.	.4 Const	trained Delaunay Triangulation	99
	5.4.1	Constraints for Delaunay Triangulation: The Issue and Solutions	99
	5.4.2	Delaunay Triangulation with Constraints	101

vii

	5.5	Triang	gulation from Contour Data with Skeletonization	102
		5.5.1	Extraction of Skeleton Lines from Contour Map	103
		5.5.2	Height Estimation for Skeleton Points	104
		5.5.3	Triangulation from Contour Data with Skeletons	106
	5.6	Delau	nay Triangulations via Voronoi Diagrams	107
		5.6.1	Derivation of Delaunay Triangulations from	
			Voronoi Diagrams	108
		5.6.2	Vector-Based Algorithms for the Generation of	
			Voronoi Diagram	108
		5.6.3	Raster-Based Algorithms for the Generation of	
			Voronoi Diagram	111
5	Inter	rpolatio	n Techniques for Terrain	
	Surf	ace Mo	deling	115
	6.1	Interp	olation Techniques: An Overview	115
	6.2	Area-	Based Exact Fitting of Linear Surfaces	117
		6.2.1	Simple Linear Interpolation	117
		6.2.2	Bilinear Interpolation	117
	6.3	Area-	Based Exact Fitting of Curved Surface	119
		6.3.1	Bicubic Spline Interpolation	119
		6.3.2	Multi-Surface Interpolation (Hardy Method)	120
	6.4	Area-]	Based Best Fitting of Surfaces	123
		6.4.1	Least-Squares Fitting of a Local Surface	123
		6.4.2	Least-Squares Fitting of Finite Elements	126
	6.5	Point-	Based Moving Averaging	127
		6.5.1	The Principle of Point-Based Moving Averaging	127
		6.5.2	Searching for Neighbor Points	128
		6.5.3	Determination of Weighting Functions	129
	6.6	Point-	Based Moving Surfaces	130
		6.6.1	Principles of Moving Surfaces	131
		6.6.2	Selection of Points	131
-	0	liter Com	5.2.2 Searching for a Point of the Meridian	122
'	Qua 7 1	Oualit	the Control: Concents and Strategy	133
	/.1	Qualit	A Simple Strategy for Quality Control in Digital	155
		/.1.1	Terrain Modeling	133
		712	Sources of Error in DTM Source (Raw) Data	133
		7.1.2	Types of Error in DTM Source Data	134
	72	7.1.5 On Li	ne Quality Control in Photogrammetric Data Acquisition	134
	1.2	7.2.1	Superimposition of Contours Back to the	155
		1.2.1	Stereo Model	135
		722	Zero Stereo Model from Orthoimages	135
		723	Trend Surface Analysis	136
		724	Three-Dimensional Perspective View for	150
		7.2.7	Visual Inspection	136

8

7.3	Filterin 7.3.1	ng of the Random Errors of the Original Data The Effect of Random Noise on the Ouality of	136
		DTM Data	137
	7.3.2	Low-Pass Filter for Noise Filtering	139
	7.3.3	Improvement of DTM Data Quality by Filtering	140
	7.3.4	Discussion: When to Apply a Low-Pass Filtering	141
7.4	Detect	ion of Gross Errors in Grid Data Based on Slope Information	142
	7.4.1	Gross Error Detection Using Slope Information: An	
		Introduction	143
	7.4.2	General Principle of Gross Error Detection Based on an	
		Adaptive Threshold	143
	7.4.3	Computation of an Adaptive Threshold	145
	7.4.4	Detection of Gross Error and Correction of a Point	146
	7.4.5	A Practical Example	147
7.5	Detect	ion of Isolated Gross Errors in Irregularly	
	Distrib	buted Data	147
	7.5.1	Three Approaches for Developing Algorithms for Gross	
		Error Detection	148
	7.5.2	General Principle Based on the Pointwise Algorithm	149
	7.5.3	Range of Neighbors (Size of Window)	149
	7.5.4	Calculating the Threshold Value and Suspecting a Point	150
	7.5.5	A Practical Example	150
7.6	Detect	tion of a Cluster of Gross Errors in Irregularly	235
	Distrit	buted Data	151
	7.6.1	Gross Errors in Cluster: The Issue	151
	7.6.2	The Algorithm for Detecting Gross Errors in Clusters	153
	7.6.3	A Practical Example	154
7.7	Detect	tion of Gross Errors Based on Topologic Relations of Contours	155
	7.7.1	Gross Errors in Contour Data: An Example	155
	7.7.2	Topological Relations of Contours for Gross	1.57
		Error Detection	156
Accu	racy of	Digital Terrain Models	159
8.1	DTM	Accuracy Assessment: An Overview	159
	8.1.1	Approaches for DTM Accuracy Assessment	159
	8.1.2	Distributions of DTM Errors	160
	8.1.3	Measures for DTM Accuracy	161
	8.1.4	Factors Affecting DTM Accuracy	163
8.2	Design	n Considerations for Experimental Tests on DTM Accuracy	165
	8.2.1	Strategies for Experimental Tests	165
	8.2.2	Requirements for Checkpoints in Experimental Tests	166
8.3	Empir	ical Models for the Accuracy of the DTM Derived from	
	Grid I	Data Data	170
	8.3.1	Three ISPRS Test Data Sets	170
	8.3.2	Empirical Models for the Relationship between DTM	257
		Accuracy and Sampling Intervals	170

		8.3.3	Empirical Models for DTM Accuracy Improvement with	170
		-	the Addition of Feature Data	172
	8.4	Theore	etical Models of DTM Accuracy Based on Slope and	
		Sampl	ing Interval	173
		8.4.1	Theoretical Models for DTM Accuracy: An Overview Propagation of Errors from DTM Source Data to	174
		0.4.2	the DTM Surface	178
		813	Accuracy Loss Due to Linear Representation of Terrain	170
		0.4.5	Surface	180
		811	Mathematical Models of the Accuracy of DTMs Linearly	100
		0.7.7	Constructed from Grid Data	186
	85	Empir	ical Model for the Relationship between Grid and	100
	0.5	Conto	or Intervals	188
		851	Empirical Model for the Accuracy of DTMs Constructed	100
		0.5.1	from Contour Data	188
		852	Empirical Model for the Relationship between Contour	100
		0.5.2	and Grid Intervals	189
		12/ 10/ 2		107
9	Mult	i-Scale	Representations of Digital Terrain Models	191
	9.1	Multi-	Scale Representations of DTM: An Overview	191
		9.1.1	Scale as an Important Issue in Digital Terrain Modeling	191
		9.1.2	Transformation in Scale: An Irreversible Process in	120
		Anal	Geographical Space	192
		9.1.3	Scale, Resolution, and Simplification of Representations	194
		9.1.4	Approaches for Multi-Scale Representations	195
	9.2	Hierar	chical Representation of DTM at Discrete Scales	196
		9.2.1	Pyramidal Structure for Hierarchical Representation	196
		9.2.2	Quadtree Structure for Hierarchical Representation	198
	9.3	Metric	Multi-Scale Representation of DTM at Continuous Scales:	200
		Genera	alization	200
		9.3.1	Requirements for Metric Multi-Scale Representation	200
		0.2.0	OF DIM	200
		9.3.2	A Natural Principle for DIM Generalization	200
	0.4	9.3.3	DIM Generalization Based on the Natural Principle	202
	9.4	Visual	Multi-Scale Representation of DTM at Continuous Scales:	205
		view-J	Dependent LOD	205
		9.4.1	Principles for View-Dependent LOD	205
		9.4.2	DTM Data	207
	0.5	Multi	Scale DTM at a National Level	207
	9.5	0.5.1	Multi Scale DTM in China	200
		9.5.1	Multi Scale DTM in the United States	209
		9.5.2	Wulli-Scale D I WI III the United States	209
10	Mana	agemen	t of DTM Data	211
	10.1	Strateg	gies for management of DTM data	211
		10.1.1	Strategy for Making DTM Data Management Operational	211
		10.1.2	Strategy for Using Databases for DTM Data Management	212

X

	10.2	Management of DTM Data with Files	213
		10.2.1 File Structure for Grid DTM	213
		10.2.2 File Structure for TIN DTM	214
		10.2.3 File Structure for Additional Terrain Feature Data	216
	10.3	Management of DTM Data with Spatial Databases	217
		10.3.1 Organization of Tables for Grid DTM Data	218
		10.3.2 Organization of Tables for TIN DTM Data	221
		10.3.3 Organization of Tables for Additional Terrain	
		Feature Data	223
		10.3.4 Organization of Tables for Metadata	225
	10.4	Compression of DTM Data	226
		10.4.1 Concepts and Approaches for DTM Data Compression	226
		10.4.2 Huffman Coding	227
		10.4.3 Differencing Followed by Coding	228
	10.5	Standards for DTM Data Format	229
		10.5.1 Concepts and Principles of DTM Data Standards	230
		10.5.2 Standards for DTM Data Exchange of the United States	231
		10.5.3 Standards for DTM Data Exchange of China	231
11	Cont	ouring from Digital Terrain Models	233
	11.1	Approaches for Contouring from DTM	233
	11.2	Vector-Based Contouring from Grid DTM	233
		11.2.1 Searching for Contour Points	234
		11.2.2 Interpolation of Contour Points	235
		11.2.3 Tracing Contour Lines	236
		11.2.4 Smoothing Contour Lines	238
	11.3	Raster-Based Contouring from Grid DTM	238
		11.3.1 Binary and Edge Contouring	239
		11.3.2 Grav-Tone Contouring	241
	11.4	Vector-Based Contouring from Triangulated DTM	241
	11.5	Stereo Contouring from Grid DTM	243
		11.5.1 The Principle of Stereo Contouring	243
		11.5.2 Generation of Stereomate for Contour Map	245
12	View	lization of Digital Tangain Madela	247
14	12 1	Visualization of Digital Terrain Models: An Overview	247
	12.1	12.1.1. Variables for Visualization	247
		12.1.1 Variables for the Visualization of DTM Data	247
	12.2	Image Based 2 D DTM Visualization	250
	12.2	12.2.1 Slope Sheding and Hill Sheding	250
		12.2.1 Slope Shading and Fill Shading	251
	123	Rendering Technique for Three Dimensional DTM Visualization	252
	12.5	12.3.1 Basic Principles of Pendering	253
		12.3.2 Graphic Transformations	255
		12.3.2 Oraphic Transformations	254
		12.3.4 The Selection of an Illumination Model	250
		12.3.4 The Selection of an infinitiation Model	251
		12.5.5 Gray value Assignment for Graphics Generation	239

	12.4	Texture Mapping for Virtual Landscape Generation	260
		12.4.1 Mapping Texture onto DTM Surfaces	260
ALC:		12.4.2 Mapping Other Attributes onto DTM Surfaces	262
	12.5	Animation Techniques for DTM Visualization	262
		12.5.1 Principles of Animation	263
		12.5.2 Seamless Pan-View on DTM in a Large Area	264
		12.5.3 "Fly-Through" and "Walk-Through" for	
		DTM Visualization	266
12	Inton	nutation of Digital Tannain Madela	267
15	12 1	DTM Interpretation: An Overview	207
	13.1	Geometric Terrain Parameters	207
	13.2	12.2.1 Surface and Projection Areas	207
		13.2.1 Surface and Projection Areas	200
	12.2	13.2.2 Volume	270
	15.5	12.2.1 Slope and Aspect	271
		13.3.1 Slope and Aspect	2/1
		13.3.2 Plan and Profile Curvatures	274
		13.3.3 Rate of Change in Slope and Aspect	215
	10.4	13.3.4 Roughness Parameters	215
	13.4	Hydrological Terrain Parameters	276
		13.4.1 Flow Direction	276
		13.4.2 Flow Accumulation and Flow Line	278
		13.4.3 Drainage Network and Catchments	279
		13.4.4 Multiple Direction Flow Modeling: A Discussion	280
	13.5	Visibility Terrain Parameters	281
		13.5.1 Line-of-Sight: Point-to-Point Visibility	282
		13.5.2 Viewshed: Point-to-Area Visibility	283
14	Appli	ications of Digital Terrain Models	285
	14.1	Applications in Civil Engineering	285
		14.1.1 Highway and Railway Design	285
		14.1.2 Water Conservancy	286
	14.2	Applications in Remote Sensing and Mapping	288
		14.2.1 Orthoimage Generation	288
		14.2.2 Remote Sensing Image Analysis	290
	14.3	Applications in Military Engineering	290
		14.3.1 Flight Simulation	290
		14.3.2. Virtual Battlefield	291
	14.4	Applications in Resources and Environment	291
		14.4.1 Wind Field Models for Environmental Study	291
		14.4.2 Sunlight Model for Climatology	292
		1443 Flood Simulation	292
		1444 Agriculture Management	293
256	14 5	Marine Navigation	203
	14.6	Other Applications	205
	14.0	our riphroutons	2)5

15	Beyond Digital Terrain Modeling				
	15.1	Digital Terrain Modeling with Complex Construction	297		
		15.1.1 Manual Addition of Constructions on Terrain Surface	297		
		15.1.2 Semiautomated Modification of the Terrain Surface	298		
	15.2	Digital Terrain Modeling on the Sphere	300		
		15.2.1 Generation of TIN and Voronoi Diagram on Sphere	300		
		15.2.2 Voronoi Diagram for Modeling Changes in Sea Level			
		on Sphere	301		
	15.3	Three-Dimensional Volumetric Modeling	302		
Epilo	gue		305		
References			307		
Index	Index		319		

the end han, the first book in this area, counted Terrean Modelling in

xiii