
The second volume of this modern account of Kaehlerian geometry and 

Hodge theory starts with the topology o f families of algebraic varieties. Proofs 
of the Lefschetz theorem on hyperplane sections, the Picard-Lefschetz study 

or Lefschetz pencils, and Deligne theorems on the degeneration of the Leray 

spectral sequence and the global invariant cycles follow. The main results of 

the second part are the generalized Noether—Lefschetz theorems, the generic 

triviality or the Abel—Jacobi maps, and most importantly Nori s connectivity 

theorem, which generalizes the above. The last part of the book is devoted 

to the relationships between Hodge theory and algebraic cycles. The book 
concludes with the example oř cycles on abelian varieties, where some results 

or Bloch and Beauville, for example, are expounded. The text is complemented 
by exercises giving useful results in complex algebraic geometry. It will be 

welcomed by researchers in both algebraic and differential geometry.
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