Contents

How can SEM contribute to scientific advancement?

	Preface	page ix
	Acknowledgments	xi
	PART I A BEGINNING	
1	Introduction	3
2	An example model with observed variables	22
	PART II BASIC PRINCIPLES OF STRUCTURAL EQUATION MODELING	
3	The anatomy of models I: observed variable models	37
4	The anatomy of models II: latent variables	77
5	Principles of estimation and model assessment	115
	PART III ADVANCED TOPICS	
6	Composite variables and their uses	143
7	Additional techniques for complex situations	181
	PART IV APPLICATIONS AND ILLUSTRATIONS	
8	Model evaluation in practice	207
9	Multivariate experiments	233
10	The systematic use of SEM: an example	259
11	Cautions and recommendations	275

PART V THE IMPLICATIONS OF STRUCTURAL EQUATION MODELING FOR THE STUDY OF NATURAL SYSTEMS

12	How can SEM contribute to scientific advancement?	291
13	Frontiers in the application of SEM	309
	Appendix I Example analyses	324
	References	350
	Index	361