Contents

Conten	IS		
Chapter 1	Intro	oduction	1
	1.1	Why Does 3D GIS Matter?	residah@j
	1.2	The Needs for 3D GIS	3
	1.3		7
	1.4		
		for 3D GIS	9
	1.5	Previous Work	10
	1.6	Background to the 3D GIS Problem	13
Chapter 2	An	Overview of 3D GIS Development	15
	2.1	GIS Functions	15
	2.2	3D GIS	16
	2.3	Recent Progress Made on 3D GIS	17
	2.4	Commercially Available Systems and 3D GIS	18
		2.4.1 ArcView 3D Analyst	18
		2.4.2 Imagine VirtualGIS	19
		2.4.3 GeoMedia Terrain	20
		2.4.4 PAMAP GIS Topographer	21
	2.5	Why is 3D GIS Difficult to Realise?	22
	2.6	Discussion	23
Chapter 3	2D a	and 3D Spatial Data Representations	25
	3.1	Introduction	25
	3.2		26
		3.2.1 Grid	26
		3.2.2 Shape Model	27
		3.2.3 Facet Model	28
		3.2.4 Boundary Representation (B-rep)	30
		3.2.5 3D Array	32
		3.2.6 Octree	33
		3.2.7 Constructive Solid Geometry (CSG)	34
		3.2.8 3D TIN (Tetrahedral network, TEN)	35
	3.3	GIS Applicability of the Representations	37
	3.4	The Selection Criteria	38
		3.4.1 Representation of Object Primitives	38

		3.4.2 Top	pology of Spatial Objects:	
		Sin	nplexes and Complexes	40
	3.5	Vector and	Raster Representations	41
	3.6	Summary		42
			ster I Introduction	Char
Chapter 4	The	Fundamenta	ls of Geo-Spatial Modelling	43
	4.1	Spatial Data	1.2 The Meeds for 3D GFS a	44
	4.2	Spatial Data	a Modeling	44
	4.3	Models and	Their Importance for Geoinformation	45
	4.4	Component	s of Geo-spatial Model	47
	4.5	Phases in G	eo-spatial Modeling	48
	4.6	Conceptual	Design of a Geo-spatial Model	50
		4.6.1 De	finition of Space	51
		4.6.2 Ab	straction of Space	52
		4.6.3 Ab	straction of Real World Object	53
		4.6.4 Ob	ject and Spatial Extent	57
		4.6.5 Spa	atial Relations	57
		4.6.6 Ap	plication of Spatial Relations	62
		4.6.7 Re	presentation of Spatial Objects	
		and	Relationships	65
		4.6.8 Spa	atial Data Models in GIS	73
	4.7		sign of Geo-spatial Model	78
		-	lational Approach	79
			ject-oriented Approach	81
	4.8	Summary	2.6 Discussion	85
Chapter 5	The	Conceptual	Design	87
enapter 5				
	5.1		(2.5D) Data Model	87
	5.2		of the TIN-based Data Model	90
	5.3		Data Model	94
	5.4		d n-dimensional Integrated Data Model	97
			e Definitions	98
	5.5		ne and Multi-theme	101
	5.6		aracteristics	102
			ler's Equality	103
	(125.2)		e Generalized Euler Equality	104
	5.7	Discussion		107

		CONTENTS	IX
Chapter 6	The	Logical Design	109
	6.1	Relational Approach	109
		6.1.1 Relational Data Structure for	
		TIN-based Model	110
		6.1.2 Relational Data Structure for a	
		TEN-based Model	112
		6.1.3 Relational Data Structure	
		for an n-dimensional Data Model	115
	6.2	Object-oriented Approach	116
		6.2.1 Object-oriented Definition of a	
		Spatial Object	117
		6.2.2 Object-oriented Design Based on IDM	118
		6.2.3 Specialization of Classes	120
		6.2.4 Aggregation of Objects	125
		6.2.5 Creation of Objects	126
		6.2.6 Behaviour of Objects in the Database	128
		6.2.7 Comparison with Other OO Approaches	129
	6.3	Discussion	130
Chapter 7	Ohio	ect-Orientation of TINs Spatial Data	133
Chapter /	Obje	ect-Orientation of Thys Spatial Data	155
	7.1	Introduction	133
	7.2	Object-oriented Concepts	133
		7.2.1 The Abstraction Mechanisms	134
		7.2.2 The Programming Language	136
	7.3	Object-oriented TIN Tessellations	136
		7.3.1 Classes for 2D TIN Tessellations	136
		7.3.2 Classes for 3D TIN Tessellations	140
	7.4	Object-oriented TINs Spatial Data Modelling	140
		7.4.1 The Classes Schema	140
	7.5	Object-oriented TIN Spatial Database	
		Development	146
		7.5.1 The POET OO DBMS	146
		7.5.2 The POET Database Schema	147
		7.5.3 The POET Database Browser	148
		7.5.4 POET Database Query	148
	7.6	Object-oriented TIN-based Subsystems	
		for GIS	149
	7.7	Summary	150

Chapter 8	The	Supporting Algorithms	153
	8.1	Introduction	153
	8.2	Distance Transformation	153
	8.3	Voronoi Tessellations	158
	8.4	Triangulations (TINs)	163
		8.4.1 TIN Topological Data Structuring	168
	8.5	Visualization	170
	8.6	3D Distance Transformation	171
	8.7	3D Voronoi Tessellation	176
	8.8	Tetrahedron Network (TEN) Generation	181
THE	8.9	Constrained Triangulations	183
		8.9.1 The Line Rasterization	183
		8.9.2 The Construction of the	
		Constrained TINs	185
	8.10	Contouring Algorithm	190
		8.10.1 Data Structures for Contouring	190
		8.10.2 The Algorithm	192
		8.10.3 The Contour Visualization	195
	8.11	Algorithms for Irregular Network Formation	196
	8.12	Summary	204
Chapter 9	Appl	lications of the Model	207
J			20,
	9.1	Integration of Terrain Relief and	61
		Terrain Features	207
	9.2	Creating an Integrated Database	209
	9.3	A Spatial Query Example	212
	9.4	Integrating with 3D Features	214
	9.5	Integrating with Geo-scientific Data	219
	9.6	Spatial Operators	221
	9.7	Graphic Visualization	223
		9.7.1 Wireframe Graphics	224
		9.7.2 Hidden Line and Surface Removal	225
		9.7.3 Surface Shading and Illumination	226
	6.1	9.7.4 Texture Mapping	227
	9.8	Virtual Reality	230
	9.9	Discussion	230

	C	CONTENTS	XI
Chapter 10	The Web and 3D GIS		233
	10.1 Introduction		233
	10.2 Web 3D GIS		234
	10.3 Management of 3D Spatial Data10.4 GUI for 3D Visualization and Editing		238
	on the Web		240
	10.5 Current and Possible Approaches in		
	Urban Planning		248
	10.6 Realized Browser-based Solutions		249
	10.7 Stand-alone Solutions/Toolkits/Front-en	nds	254
	10.8 Summary		255
Chapter 11	Conclusion and Further Outlook		257
	11.1 Summary		257
	11.2 Further Research		264
References	and Bibliography		267
Index			287