Contents

1	Con	nputation and Computers in Chemistry	
	1.1	Introduction	
	1.2	Theories and computation in chemistry	
	1.3	How computers work	
	1,4	Different types of computational method	
	1.5	A note on mathematics	
	1,6	Exercises and test calculations	
	1.7	Further reading	
	1.8	Exercises	
	1.9	Summary	
2	Qua	ntum Chemistry	
	2.1	Introduction	
	2.2	Hartree-Fock theory	
	2.3	The Hartree-Fock method in practice	
	2.4	The Hartree-Fock wavefunction and energy	
	2.5	Restricted and unrestricted Hartree-Fock methods	
	2.6	Basis sets	
	2.7	Further reading	
	2.8	Exercises	
	2.9	Summary	
;	Qua	ntum Chemical Methods	
	3.1	Introduction	
	3.2	Correlated <i>ab initio</i> methods	
	3.3	The variational approach: configuration interaction	
	3.4	The perturbation approach: Møller-Plesset theory	
	3.5	Coupled-cluster methods	
	3.6	Basis sets, correlation effects, and explicit correlation	
	3.7	Multi-reference methods	
	3.8	Density functional theory	
	3.9	Semiempirical methods	
	3.10	Solids and periodic models	
	3.11	Molecular properties	
	3.12	Further reading	

	3.13	Exercises	57
	3.14	Summary	58
4	Mol	ecular Mechanics Methods	59
	4.1	Introduction	59
	4.2	MM forcefields	60
	4.3	Parameter sets	63
	4.4	Periodic systems and cut-offs	65
	4.5	Practical aspects of molecular mechanics methods	68
	4.6	Further reading	69
	4.7	Exercises	69
	4.8	Summary	70
5	Geo	metry Optimization	71
	5.1	Introduction	71
	5.2	Features of potential energy surfaces	71
	5.3	Geometry optimization methods	77
	5.4	Geometry optimization with quantum chemical methods	80
	5.5	Geometry optimization using molecular mechanics	85
	5.6	Properties of optimized structures: vibrational frequencies	86
	5.7	Transition states and reaction paths	88
	5.8	Further reading	91
	5.9	Exercises	92
	5.10	Summary	92
6	Dyn	amics Methods	93
	6.1	Introduction	93
	6.2	Newton's laws of motion	93
	6.3	Molecular dynamics simulations	95
	6.4	Monte Carlo simulations	100
	6.5	Biomolecular simulation	102
	6.6	Further reading	103
	6.7	Exercises	104
	6.8	Summary	104
7	Rate	Constants and Equilibria	105
	7.1	Introduction	105
	7,2	Statistical thermodynamics and equilibrium	105
	7.3	Transition state theory	110
	7.4	Free energies from MD and MC simulations	111
	7.5	Enhanced sampling techniques	117
	7.6	Further reading	121

7.7	Exercises	122
7.8	Summary	122
Hyb	rid and Multi-Scale Methods	124
8.1	Introduction	124
8,2	Continuum models of the environment	125
8.3	Hybrid methods	131
8.4	Coarse-grained molecular mechanics models	134
8.5	Further reading	135
8.6	Exercises	135
8.7	Summary	136
Cone	clusions	137
9.1	Introduction	137
9.2	Designing a computational project	137
9.3	Summary	139
	Index	141