Contents

Preface XIII

1	Introduction 1
1.1	Green Chemistry and Sustainable Development 1
1.1.1	What is "Green Chemistry"? 2
1.1.2	Quantifying Environmental Impact: Efficiency, E-factors, and
	Atom Economy 4
1.1.3	Just How "Green" is this Process? 6
1.1.4	Product and Process Life-Cycle Assessment (LCA) 9
1.2	What is Catalysis and Why is it Important? 10
1.2.1	Homogeneous Catalysis, Heterogeneous Catalysis, and
	Biocatalysis 12
1.2.2	Replacing Stoichiometric Reactions with Catalytic Cycles 19
1.2.3	Industrial Example: The BHC Ibuprofen Process 22
1.3	Tools in Catalysis Research 23
1.3.1	Catalyst Synthesis and Testing Tools 24
1.3.2	Catalyst Characterization Tools 26
1.3.3	Tools for Modeling/Mechanistic Studies 28
1.4	Further Reading 29
1.5	Exercises 31
	References 35
2	The Basics of Catalysis 39
2.1	Catalysis is a Kinetic Phenomenon 39
2.1.1	Reaction Rates, Reaction Orders, Rate Equations, and
	Rate-Determining Steps 40
2.1.1.1	The Reaction Order 42
2.1.1.2	The Rate-Determining Step 43
2.1.2	The Reaction Profile and the Reaction Coordinate 44
2.1.3	Zero-Order, First-Order, and Second-Order Kinetics 46

Catalysis: Concepts and Green Applications. Gadi Rothenberg Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31824-7

	Contents	
	2.1.3.1	Zero-Order Rate Equations 46
	2.1.3.2	First-Order Rate Equations 47
	2.1.3.3	Second-Order Rate Equations 48
	2.1.4	Langmuir–Hinshelwood Kinetics 49
	2.1.5	The Steady-State Approximation 52
	2.1.6	Michaelis–Menten Kinetics 54
	2.1.7	Consecutive and Parallel First-Order Reactions 56
	2.1.8	Pre-Equilibrium, "Catalyst Reservoirs," and Catalyst
		Precursors 58
	2.2	Practical Approaches in Kinetic Studies 60
	2.2.1	Initial Reaction Rates and Concentration Effects 61
	2.2.1.1	Concentration Effects 62
	2.2.2	Creating Pseudo Order Conditions 62
	2.2.3	What You See versus What You Get 63
	2.2.4	Learning from Stoichiometric Experiments 64
	2.3	An Overview of Some Basic Concepts in Catalysis 64
	2.3.1	Catalyst/Substrate Interactions and Sabatier's Principle 65
	2.3.2	Catalyst Deactivation, Sintering, and Thermal Degradation 66
	2.3.2.1	Catalyst Deactivation 66
	2.3.2.2	Catalyst Sintering and Thermal Degradation 66
	2.3.3	Catalyst Inhibition 68
	2.3.3.1	Catalyst Poisoning 69
	2.4	Exercises 69
		References 73
	3	Homogeneous Catalysis 77
	3.1	Metal Complex Catalysis in the Liquid Phase 77
	3.1.1	Elementary Steps in Homogeneous Catalysis 78
	3.1.1.1	Ligand Exchange: Dissociation and Coordination 79
	3.1.1.2	Oxidative Addition 81
	3.1.1.3	Reductive Elimination 83
	3.1.1.4	Insertion and Migration 84
	3.1.1.5	De-insertion and β-Elimination 85
	3.1.1.6	Nucleophilic Attack on a Coordinated Substrate 85
	3.1.1.7	Other Reaction Types 86
	3.1.2	Structure/Activity Relationships in Homogeneous Catalysis 88
	3.1.2.1	Steric Effects: Ligand Size, Flexibility, and Symmetry 88
	3.1.2.2	Electronic Effects of Ligands, Substrates, and Solvents 92
	3.1.3	Asymmetric Homogeneous Catalysis 93
	3.1.4	Industrial Examples 96
	3.1.4.1	The Shell Higher Olefins Process (SHOP) 97
	3.1.4.2	The Wacker Oxidation Process 99
	3.1.4.3	The Du Pont Synthesis of Adiponitrile 100
	3.1.4.4	The Ciba–Geigy Metolachlor Process 102
	3.2	Homogeneous Catalysis without Metals 104

3.2.1	Classic Acid/Base Catalysis 104
3.2.2	Organocatalysis 105
3.3	Scaling up Homogeneous Reactions: Pros and Cons 108
3.3.1	Catalyst Recovery and Recycling 108
3.3.2	Hybrid Catalysts: Bridging the Homogeneous/Heterogeneous
	Gap 110
3.4	"Click Chemistry" and Homogeneous Catalysis 111
3.5	Exercises 113
	References 117
4	Heterogeneous Catalysis 127
4.1	Classic Gas/Solid Systems 129
4.1.1	The Concept of the Active Site 131
4.1.1	The concept of the retive site 131
	Model Catalyst Systems 132
4.1.3	Real Catalysts: Promoters, Modifiers, and Poisons 134
4.1.4	Preparation of Solid Catalysts: Black Magic Revealed 135
4.1.4.1	High-Temperature Fusion and Alloy Leaching 137
4.1.4.2	Slurry Precipitation and Co-precipitation 138
4.1.4.3	Impregnation of Porous Supports 139
4.1.4.4	Hydrothermal Synthesis 139
4.1.4.5	Drying, Calcination, Activation, and Forming 141
4.1.5	Selecting the Right Support 143
4.1.6	Catalyst Characterization 146
4.1.6.1	Traditional Surface Characterization Methods 146
4.1.6.2	Temperature-Programmed Techniques 149
4.1.6.3	Spectroscopy and Microscopy 149
4.1.7	The Catalytic Converter: an Example from Everyday Life 154
4.1.8	Surface Organometallic Chemistry 156
4.2	Liquid/Solid and Liquid/Liquid Catalytic Systems 158
4.2.1	Aqueous Biphasic Catalysis 159
4.2.2	Fluorous Biphasic Catalysis 161
4.2.3	Biphasic Catalysis Using Ionic Liquids 163
4.2.4	Phase-Transfer Catalysis 164
4.3	Advanced Process Solutions Using Heterogeneous Catalysis 165
4.3.1	The BP AVADA Ethyl Acetate Process 166
4.3.2	The ABB Lummus/Albemarle AlkyClean Process 168
4.3.3	The IFP and Yellowdiesel Processes for Biodiesel Production 168
4.3.4	The ABB Lummus/UOP SMART Process 172
4.4	Exercises 173
	References 177
5	Biocatalysis 189
5.1	The Basics of Enzymatic Catalysis 190
5.1.1	Terms and Definitions – The Bio Dialect 191
5.1.2	Active Sites and Substrate Binding Models 194

ı	Contents	
	5.1.3	Intramolecular Reactions and Proximity Effects 195
	5.1.4	Common Mechanisms in Enzymatic Catalysis 197
	5.2	Applications of Enzyme Catalysis 199
	5.2.1	Whole-Cell Systems versus Isolated Enzymes 200
	5.2.2	Immobilized Enzymes: Bona Fide Heterogeneous Catalysis 202
	5.2.2.1	Binding Enzymes to Solid Supports 202
	5.2.2.2	Trapping Enzymes in Polymers or Sol/Gel Matrices 203
	5.2.2.3	Cross-Linking of Enzymes 204
	5.2.3	Replacing "Conventional Routes" with Biocatalysis 205
	5.2.4	Combining "Bio" and "Conventional" Catalysis 207
	5.3	Developing New Biocatalysts: Better than Nature's Best 210
	5.3.1	Prospecting Natural Diversity 210
	5.3.2	Rational Design 211
	5.3.3	Directed Evolution 211
	5.4	Nonenzymatic Biocatalysts 213
	5.4.1	Catalytic Antibodies (Abzymes) 213
	5.4.2	Catalytic RNA (Ribozymes) 214
	5.5	Industrial Examples 215
	5.5.1	High-Fructose Corn Syrup: 11 Million Tons per Year 215
	5.5.2	The Mitsubishi Rayon Acrylamide Process 217
	5.5.3	The BMS Paclitaxel Process 218
	5.5.4	The Tosoh/DSM Aspartame Process 220
	5.6	Exercises 221
		References 224
	6	Computer Applications in Catalysis Research 231
	6.1	Computers as Research Tools in Catalysis 231
	6.2	Modeling of Catalysts and Catalytic Cycles 233
	6.2.1	A Short Overview of Modeling Methods 233
	6.2.2	Simplified Model Systems versus Real Reactions 236
	6.2.3	Modeling Large Catalyst Systems Using Classical Mechanics 236
	6.2.4	In-Depth Reaction Modeling Using Quantum Mechanics 238
	6.3	Predictive Modeling and Rational Catalyst Design 240
	6.3.1	Catalysts, Descriptors, and Figures of Merit 241
	6.3.2	Three-Dimensional (3D) Descriptors 242
	6.3.2.1	Comparative Molecular Field Analysis (CoMFA) 243
	6.3.2.2	The Ligand Repulsive Energy Method 244
	6.3.3	Two-Dimensional (2D) Descriptors 245
	6.3.4	Generating Virtual Catalyst Libraries in Space A 248
	6.3.5	Understanding Catalyst Diversity 250
	6.3.6	Virtual Catalyst Screening: Connecting Spaces A, B, and C 253
	6.3.7	Predictive Modeling in Heterogeneous Catalysis 255
	6.3.8	Predictive Modeling in Biocatalysis 256
	6.4	An Overview of Data-Mining Methods in Catalysis 257
	6.4.1	Principal Components Analysis (PCA) 259

6.4.2	Partial Least-Squares (PLS) Regression 260
6.4.3	Artificial Neural Networks (ANNs) 262
6.4.4	Classification Trees 264
6.4.5	Model Validation: Separating Knowledge from Garbage 264
6.4.5.1	Cross-Validation and Bootstrapping 265
6.4.5.2	Mixing the Dependent Variables (y-Randomizing) 266
6.4.5.3	Defining the Model Domain 266
6.5	Exercises 266
	References 268

Index 275