Contents

Dedication molecular dates:		
	Preface nonsiber lammam lameosiq edi to gnim Acknowledgements	
	What is marro evalution? What is marrocal and?	1
150	What is macroevolution? What is macroecology?	3
	Why study macroevolution and macroecology?	6
	A long history of ideas	25
	Testing hypotheses in macroevolution	23
	Case Study 1 Testing hypotheses about past events: uncovering the evolutionary origins of a new virus	30
2	How did evolution get started?	43
	Natural selection	45
	Experiments and models	48
	Comparative tests	64
	Case Study 2 Using homologies to infer history:	
	what was the last universal common ancestor like?	78
	The spectacular indiction of the bestles	
3	Does evolution make everything bigger and better?	87
	Evolutionary trends	88
	Evolution of complexity	100
	Case Study 3 Accounting for measurement bias:	
	has biodiversity increased over time?	115
	e the world illight sold and the second sold and the second sold in bloom and all	
4	Why did evolution explode in the Cambrian?	125
	The Cambrian explosion	126
	Mutation	143
	Case Study 4 Evo-Devo: regulatory genes and the development of body plan	156
5	Were dinosaurs evolutionary failures?	163
88	Adaptive radiation	164
	Mass extinction	175
	Case Study 5 Testing hypotheses with fossil evidence:	1,3
	did birds outcompete pterosaurs?	190

6	Was the diversification of mammals due to luck?	201
	Timing and causes of the mammalian radiation	202
	Molecular evolution	209
	Molecular dating	215
	Case Study 6 Bayesian molecular dates:	
	timing of the placental mammal radiation	233
	tiest, with thever a dust modifient along the way. Zinsmagbailwoi	Actor.
7	Is sex good for survival?	246
	Why bother with sex?	247
	Evolutionarily stable strategies	255
	Case Study 7 Phylogenetic models of macroevolution:	
	'tippy' distribution of asexuality on the tree of life	275
	supplying data, and Rod Fealathsveltastiduode asserbitopykellitäsTideybutersasi	
8	Why are most species small?	283
	The physiology and ecology of body size	285
	All creatures great and small: body size and diversity	287
	Explaining the diversity of small creatures	290
	Case Study 8 Phylogenetic tests of diversification:	
	body size and diversity in insects	307
9	Why are there so many kinds of beetles?	312
	The spectacular radiation of the beetles	314
	Testing hypotheses of diversity	322
	Case Study 9 Timing of diversification: the beetle and angiosperm radiations	336
	volution of complexity	
10	Why are there so many species in the tropics?	343
SII	Explaining tropical diversity	345
	Is the world full of species?	354
	Testing hypotheses for tropical diversity	
	Case Study 10 Global dynamics of speciation,	
	extinction, and geographical expansion	075
	See Study A. Evo-Devo: regulators gones and the devolopment of body plan	
11	What is the future of biodiversity?	383
	Extinctions, biodiversity loss, and the 'Anthropocene'	385
	Big-picture conservation	398
	Case Study 11 Modelling extinction risk:	
	predicting conservation status of Data-Deficient species	416
	id hirds outcomnete nterosaurs?	
An	pendix	422
Ind		424
1710	dea .	124