Contents

1	The	e origins of physical chemistry	1
	1.1	The meaning of 'science', 'philosophy', 'physics' and 'chemistry'	1
	1.2	The meaning of 'physical chemistry'	5
		The nature of a physical chemist—Mathematics and physical	
		chemistry	
	1.3	Attitudes to science	12
		The churches—The universities—Governments	
	1.4	Technology and scientific research	19
		Some schools and laboratories of physical chemistry	22
		England—Scotland—North America	
2	Co	nmunication in the physical sciences	36
	2.1	General scientific periodicals	37
		The Philosophical Transactions-Other British journals-	
		French journals—German journals—Other countries	
	2.2	Chemical journals	46
	2.3	Journals for physical chemistry	48
	2.4	Some difficulties of communication	52
3	The	e growth of the physical sciences	55
	3.1	The mechanical universe	55
		Early science—The beginnings of modern science—	
		Galileo's mechanics-Newton's mechanics-Analytical	
		dynamics-Laplace's theory of matter-Hamilton's mechanics	
	3.2	Early physical chemistry	69
		Concepts in the physical sciences	74
		Laws of mechanics—The atomic nature of matter—	
		The concept of energy—The nature of heat—The nature	
		of light—The electrical nature of matter—Decline of	
		mechanical models: operational definitions-Quantization	
4	The	ermodynamics	83
	4.1	Temperature and heat	84
		Carnot and heat engines—The nature of heat	
	4.2	The first law	97
	4.3	The second law	99
		Kelvin's absolute temperature scale-Kelvin's statement of the	
		second law-Clausius's approach to the second law-	
		The concept of entropy—Rankine's thermodynamics	

x CONTENTS	x	C	O	N	T	E	N	T	ŝ
------------	---	---	---	---	---	---	---	---	---

	4.4	Chemical thermodynamics The thermodynamics of Willard Gibbs—The thermodynamics of Helmholtz—The thermodynamics of van't Hoff—Solutions and phase transitions—Non-ideal systems	107
	4.5	The third law, or Nernst's heat theorem	126
5	Kin	etic Theory and Statistical Mechanics	131
	5.1	The gas laws Boyle's law—Gay-Lussac's law—Avogadro's hypothesis— Non-ideal gases	131
	5.2	Atomic theories Boscovitch's atomic theory—Dalton's atomic theory— The vortex atom—The reality of atoms	136
	5.3	The kinetic theory of gases Clausius's kinetic theory—The distribution of velocity and energy—The statistical basis of the second law	142
	5.4	Statistical mechanics	161
6	Che	emical Spectroscopy	165
		Spectral analysis	167
	6.2	Kirchhoff's principles of spectroscopy	178
	6.3	Spectroscopic discovery of elements	179
	6.4	The Lambert-Beer law	181
		Spectral series	182
	6.6	Nineteenth-century theories of spectra	184
	6.7	Modern chemical spectroscopy	185
		Raman spectra—Laser spectroscopy—Magnetic resonance spectroscopy—Mössbauer spectrscopy—Mass spectrometry	
7		ctrochemistry	195
	7.1	Electrolysis Faraday's laws of electrolysis—Electricity and matter	199
	7.2	Electrolytic conductivity and dissociation Arrhenius's theory of electrolytic dissociation—Objections to electrolytic dissociation—Strong electrolytes—Thermodynamics of ions	207
	7.3	Electrochemical cells	219
		Thermodynamics of electrochemical cells	221
		Nernst's electrochemistry	221
	7.5	Electrode processes The electrical double layer—Polarography	237
8		emical Kinetics	233
	81	The course of chemical change	234

C	0	N	Т	E	N	Т	S	xi

8.2	Temperature dependence of reaction rates The activation energy and pre-exponential factor	238
8.3	Theories of reaction rates Thermodynamic aspects—Collision theory—Statistical treatments—Potential-energy surfaces and transition-state theory—Composite mechanisms	242
8.4	Photochemical reactions Photochemical imaging—Principles of photochemistry— Photochemical equivalence—Chain reactions—Nernst's mechanism for $H_2 + Cl_2$ —Steady-state hypothesis— Flash photolysis	249
8.5	Thermal reactions Unimolecular gas reactions—Organic free radicals— Gaseous explosions—Branching chains—Techniques for fast reactions	262
8.6	Reactions in solution Diffusion-controlled reactions	273
8.7	Catalysis Catalysis by acids and bases—Surface catalysis	277
8.8	Reaction dynamics Molecular beams—The detection of transition species	283
Colle	oid and Surface Chemistry	290
	Physical properties of colloidal systems Light scattering—Brownian movement and sedimentation—	290 293
9.1	Physical properties of colloidal systems	
9.1 9.2	Physical properties of colloidal systems Light scattering—Brownian movement and sedimentation— Electrical properties Surface tension and surface films Benjamin Franklin's observations—The work of Agnes Pockels	293
9.1 9.2 9.3 Quai	Physical properties of colloidal systems Light scattering—Brownian movement and sedimentation— Electrical properties Surface tension and surface films Benjamin Franklin's observations—The work of Agnes Pockels and Lord Rayleigh—Langmuir's surface film balance Adsorption on solid surfaces Adsorption isotherms	293298309313
9.1 9.2 9.3 Quai	Physical properties of colloidal systems Light scattering—Brownian movement and sedimentation— Electrical properties Surface tension and surface films Benjamin Franklin's observations—The work of Agnes Pockels and Lord Rayleigh—Langmuir's surface film balance Adsorption on solid surfaces Adsorption isotherms	293 298 309

xii CONTENTS

10.3 Chemical bonding

Early electronic theories of valency—Solving the Schrödinger equation—The Heitler–London treatment: valence-bond theory—Molecular orbitals

Buts and Electromy's muticumerization of Streets in a second seco

Appendix: Scientific periodicals References and Notes Biographical Notes References for Biographies Index

339