Contents

P

refa	ace to t	he Two-Volume Series	xiii
refa	ace to t	he First Volume	xxi
CHA	PTER	1: Introduction	1
	1.1	Thermodynamics — A Pre-eminent Example of an Exact	
		Science	1
	1.2	The Language of Thermodynamics	3
		1.2a The Thermodynamic System	3
		1.2b Isolated, Closed, and Adiabatic Systems:	16.7
		Surroundings and the Universe	4
		1.2c Components and Mixtures	5
		1.2d Chemical Processes	7
	1.3	Thermodynamic Variables	8
		1.3a Number of moles (n)	9
		1.3b Volume (V)	9
		1.3c Pressure (p)	10
		1.3d Temperature (T)	10
		The Zeroth Law of Thermodynamics	11
		Temperature Scales	11
		The Thermodynamic or Kelvin Temperature	
		Scale	11
		The Absolute Temperature Scale	11
		The International Temperature Scale — ITS-90	12
		1.3e Internal Energy (U)	14
		1.3f Entropy (S)	17
		1.3g Enthalpy (H)	19
		1.3h Helmholtz Free Energy (A)	20
		1.3i Gibbs Free Energy (G)	21
	1.4		22
		1.4a The Pfaffian Differential and the Test for	
		Exactness	22
		1.4b Relationships Between Exact Differentials	24

vi	Con	tents

	1.5		ation of Thermodynamic Equations using the	
		Prope	erties of the Exact Differential	28
		1.5a	Examples of the Application of Exact Differential	
			Relationships	29
	1.6	Calcu	lation of Changes in the Thermodynamic Variable	32
	1.7	Use o	of Units	33
	Refe	erences		36
CHA	PTER	2: The	e First and Second Laws of Thermodynamics	37
	2.1	The I	First Law of Thermodynamics	37
		2.1a	Work	38
		2.1b	Calculation of Work	40
			The Isobaric Process	41
			The Isochoric Process	42
			The Isothermal Process	42
			The Reversible Process	44
		2.1c	Calculation of Heat	48
			Heat Capacity	48
			Relationships between U, H, q, C_p , and C_V	52
		2.1d	Calculation of q for Other Processes	56
	2.2	The S	Second Law of Thermodynamics	56
		2.2a	The Carnot Cycle: A Hypothetical Engine of	
			Fundamental Importance	58
		2.2b	The Kelvin Temperature and Its Role in Calculating	
			an Entropy Change	60
		2.2c	The Second Law Expressed in Terms of an Entropy	
			Change	62
		2.2d	Carathéodory and Pfaffian Differentials	63
			Pfaffian Differential Expressions With Two	
			Variables	64
			Pfaffian Differential Expressions with Three or	
			More Variables and the Conditions for the	
			Existence of an Integrating Denominator	67
		2.2e	The Carathéodory Principle and Inaccessible States	68
		2.2f	The Identification of the Absolute (Ideal Gas)	
			Temperature as the Integrating Denominator	71
		2.2g	Entropy Changes for Reversible and Irreversible	
		-	Paths	78
		2.2h	Calculation of an Entropy Change	82
			Calculation of ΔS for the Reversible Isothermal	
			Expansion of an Ideal Gas	83

		Calculation of ΔS for the Reversible Adiabatic	262
		Expansion Calculation of AS for the Jacharia Temperature	83
		Calculation of ΔS for the Isobaric Temperature Change	83
		Calculation of ΔS for the Isochoric Temperature	05
		Change	84
		Calculation of ΔS for the Reversible (Equilibrium)	0.
		Phase Change	84
		Calculation of ΔS for the Mixing of Ideal Gases at	
		Constant T and p	85
		2.2i Entropy and Disorder	89
	2.3	Implications of the Laws	90
		2.3a The Laws of Thermodynamics and Cyclic Engines	94
	Refe	erences	102
CHA	PTER	3: Thermodynamic Relationships and Applications	105
	3.1	The Gibbs Equations	106
	3.2	Partial Differential Relationships	107
		3.2a The Gibbs-Helmholtz Equation	113
		3.2b Observations About the Differential Relationships	114
	3.3	Applications of the Differential Relationships	118
		3.3a Examples of the Application of the Differential	
		Relationships	120
		3.3b Difference Between C_p and C_V	129
		3.3c The Reversible Adiabatic Expansion or	
		Compression	131
		3.3d The Carnot Cycle	135
	2.4	3.3e The Joule–Thomson Expansion	139
		Relationship Between Free Energy and Work	145
	Reie	erences	153
CIII	DEED	7: The Thermodynamic Properties of Solutions	
СНА	PIER	4: The Third Law and Absolute Entropy Measurements	155
	4.1	Verification of the Third Law	163
	4.2	Exceptions to the Third Law	167
	4.3	Implications and Applications of the Third Law	177
		4.3a Attainment of Perfect Order at Low Temperatures	177
		4.3b Limiting Values for Thermal Properties at Zero	330
		Kelvin	182
		Coefficient of Expansion	182
		Temperature Gradient of Pressure	183

		Heat Capacity	183
		G_0 and H_0	184
	4.4	Production of Low Temperatures and the Inaccessibility of	
		Absolute Zero	184
		4.4a Production of Low Temperatures	184
		Joule–Thomson Expansion and Evaporation	
		Techniques	184
		Adiabatic Demagnetization	185
		Nuclear Alignment	186
		Laser Cooling	186
		4.4b Inaccessibility of Absolute Zero	188
	4.5		189
	Refe	erences	200
		References Report anadosi and	
CHA	PTER	5: The Chemical Potential and Equilibrium	203
	5.1	Composition as a Variable	203
	5.2	The Chemical Potential	204
	5.3	Partial Molar Properties	208
	5.4	The Gibbs–Duhem Equation	213
	5.5	Determination of Partial Molar Properties	214
		5.5a Numerical Methods	215
		5.5b Analytical Methods Using Molality	217
		5.5c Analytical Methods Using Mole Fractions	219
		5.5d Calculations of Partial Molar Properties From	
		Apparent Molar Properties	222
	5.6	Criteria for Equilibrium	225
		5.6a Criterion for Phase Equilibrium	231
		5.6b The Gibbs Phase Rule	237
		5.6c The Clapeyron Equation	238
		5.6d Criterion for Chemical Equilibrium	240
	Refe	erences	246
CHA	DTFD	6: Fugacity, Activity, and Standard States	247
		or Augusto, Housing, and Standard States	
	6.1	Fugacity	247
		6.1a Definition of Fugacity	247
		6.1b Determination of Fugacities	249
		6.1c Fugacity for Pure Condensed Phases	259
		6.1d Effect of Pressure and Temperature on the Vapor	
		Fugacity	260
		Change of Fugacity With Pressure	260
		Change of Fugacity With Temperature	261

		6.1e	Fugacity in a Mixture	262
			Fugacity of a Component in a Gaseous Mixture	263
			Fugacity in Liquid Mixtures: Raoult's Law and	
			Henry's Law	268
			a. Raoult's Law and the Ideal Solution	268
			b. Henry's Law	273
			c. The Duhem-Margules Equation	276
	6.2	The A	Activity	279
		6.2a	Effect of Pressure on Activity	280
		6.2b	Effect of Temperature on Activity	281
	6.3	Stand	lard States	282
		6.3a	Choice of Standard States	283
			Standard State of a Gas	283
			Standard States for Pure Solids and Pure Liquids	285
			Standard State of a Solvent in a Mixture	287
			Standard States of Solutes in Solution	290
	6.4	Activ	ities of Electrolyte Solutions	294
		6.4a	Activities and Standard States of Strong	
			Electrolytes	295
		6.4b	Activities of Strong Unsymmetrical Electrolytes	301
	6.5	Deter	rmination of Activity	304
		6.5a	Activity from Vapor Pressure Measurements	304
		6.5b	Activities from Freezing Point and Boiling Point	
			Measurements	305
		6.5c	Activity from Isopiestic Methods	309
		6.5d	Solute Activities From Measurement of Partition	
			Coefficients	311
		6.5e	Calculation of the Activity of One Component From	
			That of the Other	313
	Refe	erences		322
CHA	PTER	7: Th	e Thermodynamic Properties of Solutions	325
	7.1	Chan	ge in the Thermodynamic Properties of Nonelectrolyte	
	/.1		ions due to the Mixing Process	325
		7.1a		323
		7.1a	from the Formation of Ideal Solutions	326
		7.1b	Excess Thermodynamic Functions	328
		7.10	Nonpolar + Nonpolar Mixtures	320
				330
				331
			Excess Volume Comparison	332
			Encess volume Comparison	552

x Contents

	7.2	Calcul	lation of the Thermodynamic Properties of Strong	
		Electr	olyte Solutes: The Debye-Hückel Theory	333
		7.2a	Derivation of the Activity Coefficient Equations	335
		7.2b	Comparison of the Debye-Hückel Prediction with	
			Experimental Values	343
		7.2c	The Debye-Hückel Prediction of the Osmotic	
			Coefficient	345
		7.2d	The Debye-Hückel Prediction of Thermal and	
			Volumetric Properties of the Solute	348
	7.3	Relati	ve Partial Molar and Apparent Relative Partial Molar	
			nal Properties	350
		7.3a		350
		7.3b	Calculation of ΔH from Relative Partial Molar	
			Enthalpies	352
		7.3c	Relative Apparent Molar Enthalpy	356
		7.3d	Determination of Relative Apparent Molar	
		Comp	Enthalpies	358
		7.3e	Relative Partial Molar Heat Capacities	363
		7.3f	Relative Apparent Molar Heat Capacity	365
	7.4		Osmotic Pressure	367
	5.5	7.4a	Osmosis	373
	Refe		6.5a Activity from Vapor Pressure Measuren	382
	10	ind ha		217
CHAF	TER	8: The	Equilibrium Condition Applied to Phase Equilibria	383
	8.1	Phase	Equilibria for Pure Substances	385
		8.1a	The Phase Diagram and the Gibbs Phase Rule	385
		8.1b	Solid + Liquid Equilibrium	387
		8.1c	Equilibrium Involving a Condensed Phase and the	
			Vapor Phase	389
			The Clausius-Clapeyron Equation	389
		8.1d	Vapor + Liquid Equilibrium: The Critical Point	392
		8.1e	Solid + Solid Phase Transitions	399
			First-Order Phase Transitions	402
	8.2	Phase	Equilibria for Mixtures	405
		8.2a	Vapor + Liquid Equilibrium	406
		8.2b	Liquid + Liquid Equilibrium	413
		8.2c	Solid + Liquid Equilibrium	418
			Effect of Pressure on Solid + Liquid Equilibrium	422
			Solid + Liquid Equilibria in Less Ideal Mixtures	424
	Refe	rences	Characteristic in the second in the second second second	433

	9: The Equilibrium Condition Applied to Chemical Processes	435
9.1	The Equilibrium Constant	435
	9.1a Alternate Forms of the Equilibrium Constant	437
	9.1b Effect of Pressure and Temperature on the	
	Equilibrium Constant	443
	The Effect of Pressure	443
	The Effect of Temperature	446
9.2	Enthalpies and Gibbs Free Energies of Formation	448
	9.2a Determination of Standard Enthalpies and Gibbs	
	Free Energies of Formation	450
	Enthalpies of Formation	450
	Gibbs Free Energies of Formation	456
	9.2b Enthalpies of Formation and Gibbs Free Energies of	
	Formation of Ions in Solution	457
9.3	Examples of Chemical Equilibrium Calculations	464
9.4	Electrochemical Cells	475
	9.4a Thermodynamic Applications of Electrochemical	
	Cells	479
	Measurement of E° and Activities	479
	Measurement of Equilibrium Constants	487
Refe	rences	496
TER	10: Statistical Thermodynamics	497
10.1	Energy Levels of an Ideal Gas Molecule	497
	Translational Energy Levels	498
	Rotational Energy Levels	499
	Vibrational Energy Levels	502
	Electronic Energy Levels	505
10.2	Distribution of Energy Among Energy Levels	507
10.2		201
10.2		514
	The Boltzmann Distribution Law 10.3a Evaluation of α	
	The Boltzmann Distribution Law 10.3a Evaluation of α	514
	The Boltzmann Distribution Law	514 517
10.3	The Boltzmann Distribution Law 10.3a Evaluation of α 10.3b Evaluation of β The Partition Function	514 517 518
10.3 10.4	The Boltzmann Distribution Law 10.3a Evaluation of α 10.3b Evaluation of β The Partition Function Relationship Between the Partition Function and the	514 517 518
10.3 10.4	The Boltzmann Distribution Law 10.3a Evaluation of α 10.3b Evaluation of β The Partition Function	514 517 518 523
10.3 10.4 10.5	The Boltzmann Distribution Law 10.3a Evaluation of α 10.3b Evaluation of β The Partition Function Relationship Between the Partition Function and the Thermodynamic Properties	514 517 518 523 528
10.3 10.4 10.5	The Boltzmann Distribution Law 10.3a Evaluation of α 10.3b Evaluation of β The Partition Function Relationship Between the Partition Function and the Thermodynamic Properties Evaluation of the Partition Function for the Ideal Gas	514 517 518 523 528 534
10.3 10.4 10.5	The Boltzmann Distribution Law 10.3a Evaluation of α 10.3b Evaluation of β The Partition Function Relationship Between the Partition Function and the Thermodynamic Properties Evaluation of the Partition Function for the Ideal Gas 10.6a Translational Partition Function	514 517 518 523 528 534 536

	10.7	Calcula	ation of the Thermodynamic Properties of the Ideal	
		Gas	re Solutes: The Debyg-Blanks energorg	543
		10.7a	Examples of the Derivation of the Contribution to	
			the Thermodynamic Properties	544
			Translational Contribution to Entropy	544
			Translational and Rotational Contributions to	
			Enthalpy for a Linear Molecule	548
			Vibrational Contribution to the Gibbs Free	
			Energy for a Linear Diatomic Molecule	549
			Calculation of Thermodynamic Properties	549
		10.7b	Corrections to Table 10.4 for Diatomic	
			Molecules	555
			Rotational Partition Function Corrections	556
			Anharmonicity and Nonrigid Rotator	
			Corrections	557
		10.7c	Contributions of Internal Rotation to the	
			Thermodynamic Properties	564
			Free Potation $(kT > V_{c})$	566
			Hindered Rotation $(kT \approx V_0)$	568
	10.8	Calcula	ation of the Thermodynamic Properties of Solids	569
		10.8a	The Einstein Heat Capacity Equation	569
		10.8b	The Debye Heat Capacity Equation	572
		10.8c	Contribution to the Heat Capacity of Solids	
			from Low-lying Electronic Levels: The Schottky	
			Effect	580
	Refer	ences		592
		Phase E		385
001			he Phase Diens Inversed Site of the Rule	
APPI	ENDIX	I: Math	nematics for Thermodynamics	593
	A1.1	Opera	tions with Derivatives and Integrals	593
	A1.2		Differentials and Relationships Between Partial	
		Deriva	atives	594
	A1.3	Intens	ive and Extensive Variables	598
	A1.4	State]	Functions and Exact Differentials; Inexact	
			entials and Line Integrals	599
			State Functions	599
		A1.4b	Exact and Inexact Differentials	604
			Line Integrals	605
	A1.5		n Differentials	608
		A1.5a	Pfaffian Differential Expressions in Three	
			Dimensions	609
		A1.5b	Maxwell Relations in Three Dimensions	609

		A1.5c	Differential Equations, Solution Curves, and	
			Solution Surfaces	610
		A1.5d	Pfaffian Differential Expressions in Two	
			Dimensions	611
	A1.6		's Theorem	612
	A1.7	and the second second	hical Integrations	613
		A1.7a		613
	-	A1.7b		614
	A1.8	Stirlin	ng's Approximation	615
APPH	ENDIX 2	2: The	International Temperature Scale of 1990	617
	A2.1	Fixed	Points	619
	A2.2	Choic	e of Thermometer	619
		A2.2a	Temperature Interval 0.65 to 5.0 K	619
		A2.2b		620
		A2.2c		620
	A2.3	The L	Deviation Function	622
	A2.4	Meas	urement of Temperatures Above 1234.93 K	624
	A2.5		ection of Existing Data to ITS-90	624
APPE	ENDIX 3	3. Equa	tions of State for Gases	627
	A3.1	The L	deal Gas	627
	A3.2		Virial Equation	627
	A3.3		Virial Equation Explicit in Pressure	629
	A3.4		Equations of State	629
	A3.5		Equations of State	631
			Comparison of Cubic Equations of State	631
			s is, in Alany ways, inden the dis modern science but	
PPH	ENDIX 4	4: Calc	culations from Statistical Thermodynamics	639
			and inty years, it is sub tim and secure and can be	
			Thermodynamic Functions of an Ideal Gas	640
	Table	A4.2	Moments of Inertia and Rotational Constants of	642
	Table	112	Some Common Molecules	642
	Table	A4.3	Fundamental Vibrational Frequencies of Some	614
	Table	A 4 4	Common Molecules	644
	rable	A4.4	Electronic Energy Levels of some Common	616
	Table	115	Molecules or Atoms With Unpaired Electrons	646
	rable	A4.3	Anharmonic Oscillator and Nonrigid Rotator Corrections	646
			Concettons	040

Table A4.6 Contributions to the Thermodynamic Properties Due to Internal RotationTable A4.7 The Debye Thermodynamic Functions Expressed in	648
Terms of $\theta_{\rm D}/T$	651
A1.6 Eden's Theorem edited in Contract Contract A1.6	001
A2.3 * The Deviation Function and antiston and	
And the second Atoms With Electrons Beetrons	