This book describes modern thinking about the electronic structure and properties of crystalline and non-crystalline materials in a form that is readily accessible to undergraduates in materials science, physics, and chemistry. In recent years the dominant role of the local atomic environment in controlling electronic structure and properties of materials has been recognized. The 'realspace' approach to electronic structure that this recognition has spawned runs through the book, and provides a coherent framework in which to study perfect and defective crystals and non-crystalline materials. This is the approach that those who have been worried by the conventional preoccupation with perfect crystals and band theory have been waiting for. The reciprocal space approach, exemplified in band theory, is also developed and powerful links between the two approaches are shown. Modern, first principles calculations, based on density functional theory, are now predictive tools in materials science and they are introduced and illustrated with relevant examples. Throughout this book the mathematical complexity is kept to a bare minimum. This book provides a unique introduction to current understanding and predictive modelling of electronic structure and properties in today's materials.

Adrian Sutton is a University Lecturer in Materials Science at Oxford University and a Fellow of Linacre College.

The cover shows a snapshot of the electronic charge density of a chlorine molecule dissociating on a silicon (111) surface as computed self-consistently in density functional theory by A. De Vita, M. J. Gillan, D. King-Smith, M. C. Payne, and I. Stich.

OXFORD UNIVERSITY PRESS

1.	Introduction band sittlem of the morsing as	1
	Aims of the book	1
	The 'universal' equation of state for metals	1
	Structure maps	9
	The hydrogen atom	9
	Metals, semiconductors, and insulators	20
	References	20
2.	The diatomic molecule	21
	Review of bras, kets, and all that	21
	A homonuclear diatomic molecule: the hydrogen molecule	25
	A heteronuclear diatomic molecule	32
	Electronegativity	34
	Bond energy and bond order	35
	Reference	37
3.	From the finite to the infinite	38
	Chain molecules and k-space	38
	Bond order in an infinite system	52
	The density of states: total and local	58
	Band energy and bond energy	63
	The moments theorem	66
	The binary AB alloy	72
	References	73
4.	Into two and three dimensions	74
	Solids as giant molecules	74
	The square lattice	74
	The cubic lattice	78
	Brillouin zones for the f.c.c and b.c.c. lattices	78
	Equation of motion of an electron under an external force	80
	Holes	84
	The Fermi surface	87
	The density of states in two- and three-dimensional crystals	88
	The density matrix, bond order, and bond energy	92
	The moments theorem applied to two- and three-dimensional	97
	CIVALAIN	4/

Filmfinite linear chain with two a states per arem is to

xiv Contents

5.	Band gaps: origins and consequences	101
	Introduction	101
	Infinite linear chain with two s states per atom	103
	Energy gap in a binary AB alloy linear chain crystal	106
	Peierls distortions	107
	Metals, insulators, and the metallic bond	109
	ivictals, insulators, and the metanic bond	109
6.	s-p bonding—a case study in silicon	112
	s-p bonding	112
	s-p bonding between two silicon atoms	113
	Angular dependence of s-p and p-p hopping integrals	116
	sp hybrids	117
	Simple models of the electronic structure of tetrahedrally	NO
	bonded silicon	122
	The band structure of silicon in a minimal atomic basis set The bond order and bond energy in silicon in a minimal atomic	124
	basis set	127
	References	131
7.	Free electron theory	132
	Introduction to free electron theory	132
	The free electron approximation	133
	Electrons in a box	135
	Density of states	138
	Free electron bands and LCAO bands	139
	The nearly free electron model	144
	The pseudopotential	151
	Screening	153
	Exchange and correlation	155
	References	157
8	Properties of free electron metals	158
	Fermi-Dirac statistics	
		158 159
	Contact potential	160
	Electronic specific heat	162
	Electrical conductivity of metals	164
	Thermal conductivity of metals The Wiedemann-Franz law	164
	The Hall effect	165
		166
	The cohesive energy of simple metals and its volume dependence	169
	Structural energy differences Reference	171
	TOTO TOTO	1/1

	Conte	ents xv
9.	The transition metals	172
	The transition metals	172
	The Friedel model	174
	The Friedel model in the second moment approximation Finnis-Sinclair potentials for computer simulations of	175
	transition metals	179
	d-d bonding	183
	Changes in crystal structure across the transition metal serie	
	Bonding in metallic alloys	189
	References	193
10.	Structural stability of compounds	194
	Hybridization and crystal structural stability	194
	Atomic factors influencing the structures of compounds	197
	Structure maps	198
	Applications of structure maps	201
	References	203
11.	Introduction to modern quantitative theory	204
	Modern quantitative predictions of crystal structure and	
	stability	204
	The Born-Oppenheimer approximation	205
	Outline of density functional theory	205
	Applications	209
	References	214
12.	Where band theory breaks down	215
	Electrons in noncrystalline materials	215
	The energy gap in amorphous silicon	219
	Electron localization	221
	Polarons	222
	Anderson localization	224
	Metal-insulator transitions, or, what is a metal?	225
	References	235
Pro	blems	236
Sar	mple examination questions	250
Index		257