Contents

Preface

v
Chapter 1: Ratio 1-11
Commensurable and incommensurable quantities 2
Ratio greater and less inequality 2$\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\ldots . .=\left(\frac{p a^{n}+q c^{n}+r e^{n}+\ldots}{p b^{n}+q d^{n}+r j^{n}+\ldots}\right)^{\frac{1}{n}}3\frac{a_{1}+a_{2}+a_{3}+\ldots+a_{n}}{b_{1}+b_{2}+b_{3}+\ldots+a_{n}}$ lies between greatest and least of fraction
$\frac{a_{1}}{b_{1}}, \ldots \ldots \ldots \ldots ., \frac{a_{n}}{b_{n}}$5
Cross multiplication 7
Eliminant of three linear equations 8
Examples I 9
Chapter 2: Proportion 12-18
Definitions and Propositions 12
Comparison between algebraical and geometrical definitions 14
Case of incommensurable quantities 16
Examples II 17
Chapter 3: Variation 19-24
if $A \propto B$, then $A=m B$ 20
Inverse variation 20
Joint variation 20
If $A \propto B$, with C is constant and $A \propto C$ when B is constant, then $A=m B C$ 22
Illustrations. Examples on joint variation 23
Examples III 23
Chapter 4: Arithmetical Progression 25-32
Sum of n terms of an arithmetical series 25
Fundamental formulae 26
Insertion of arithmetic means 26
Examples IV (a) 28
Discussion of roots of $d n^{2}+(2 a-d) n-2 s=0$ 29
Examples IV (b) 31
Chapter 5: Geometrical Progression 33-41
Insertion of geometric means 34
Sum of n terms of a geometrical series 34
Sum of an infinite geometrical series 35
Examples $V(a)$ 37
Proof of rule for the reduction of a recurring decimal 38
Sum of n terms of an arithmetic and geometric series 39
Examples $V(b)$ 40
Chapter 6: Harmonical Progression: Theorems 42-50 Connected with the Progressions
Reciprocals of quantities in HP are in AP 42
Harmonic Mean 42
Formulae connecting AM, GM, HM 43
Hints for solution of questions in Progressions 44
Sum of squares of the natural numbers 44
Some of cubes of the natural numbers 45
\sum notation 46
Examples VI (a) 46
Number of shot in pyramid on a square base 47
Pyramid on a triangular base 47
Pyramid on rectangular base 47
Incomplete pyramid 48
Examples VI (b) 49
Chapter 7: Scales of Notation 51-59
Explanation of systems of notation 51
Examples VII (a) 52
Expression on an integral number in a proposed scale 53
Expression of a radix fraction in a proposed scale 55
The difference between a number and the sum of its digits is divisible by $r-1$ 56
Proof or rule for "casting out the nines" 56
Test of divisibility by $r+1$ 56
Examples VII (b) 57
Chapter 8: Surds and Imaginary Quantities 60-74
Rationalising the denominator of $\frac{a}{\sqrt{b}+\sqrt{c}+\sqrt{d}}$ 60
Rationalising factor of $\sqrt[p]{a}+\sqrt[q]{b}$ 60
Square root of $a+\sqrt{b}+\sqrt{c}+\sqrt{d}$ 62
Cube root of $a+\sqrt{b}$ 62
Examples VIII (a) 65
Imaginary quantities 66
$\sqrt{-a} \times \sqrt{-b}= \pm \sqrt{a b}$ 67
If $a+i b=0$, then $a=0, b=0$ 67
If $a+i b=c+i d$, then $a=c, b=d$ 68
Modulus of product is equal to product of moduli 68
Square root of $a+i b$ 69
Powers of i 71
Cubic roots of unity; $1+\omega+\omega^{2}=0$ 71
Powers of ω 72
Examples VIII (b) 73
Chapter 9: The Theory of Quadratic Equations 75-86
A quadratic equations cannot have more than two roots 75
Conditions for real, equal, imaginary roots 76
Sum of roots $=-\frac{b}{a}$, Product of roots $=\frac{c}{a}$ 76
Formation of equations when the roots are given 76
Conditions that the roots of a quadratic should be (1) equal in magnitude and opposite in sign, (2) reciprocals 76
Examples IX (a) 80
For real values of x the expression $a x^{2}+b x+c$ has in general the same sign as a; exceptions 81
Examples IX (b) 83
Definitions of function, variable, rational integral function 84
Condition that $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c$ may be resolved into two linear factors. 84
Condition that $a x^{2}+b x+c=0$ and $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$ may have common root. 85
Examples IX (c) 85
xii
Chapter 10: Miscellaneous Equations87-102
Equations involving one unknown quantity 87
Reciprocal equations 90
Examples X (a) 91
Equations involving two unknown quantities 92
Homogeneous equations 93
Examples $X(b)$ 95
Equations involving several unknown quantities 96
Examples X (c) 98
Indeterminate equations; easy numerical examples 99
Examples $X(d)$ 101
Chapter 11: Permutations and Combinations 103-117
Preliminary proposition 103
Number of Permutations of n things r at a time 103
Number of combinations of n things r at a time 105
The number of combinations of n things r at a time is equal to the number of combinations of n things $n-r$ at a time 106
Number of way in which $m+n+p+\ldots$..things can be divided into classes containing $m, n, p, \ldots .$. things severally 107
Examples XI (a) 109
Signification of the terms 'like' and 'unlike' 111
Number of arrangement of n things taken all at a time when p things are alike of one kind, q things are alike of a second kind and c. 111
Number of permutations of n things r at a time, when each may be repeated 112
The total number of combinations of n things 113
To find for what value of r the expression ${ }^{n} c_{r}$ is greatest 113
$A b$ initio proof of the formula for the number of combination of n things r at a time 113
Total number of selections $p+q+r+\ldots . .$. things, where of p are alike of one kind, q alike of a second kind and c. 115
Examples XI (b) 116
Chapter 12: Mathematical Induction 118-120
Illustrations of the method of proof 118
Product of n binomial factors of the form $x+a$ 118
Examples XII 120
Chapter 13: Binomial Theorem: Positive Integral Index 121-132
Expression of $(x+a)^{n}$, when n is a positive integer 122
General term of the expansion 124
The expansion may be made to depend upon the case in which the first term is unity 124
Second proof of the binomial theorem 125
Examples XIII (a) 126
The coefficients of terms equidistance from the beginning and end are equal 127
Determination of the greatest term 127
Sum of coefficients 129
Sum of coefficients of odd terms is equal to sum of coefficients of even terms 129
Expansion of multinomials 130
Examples XIII (b) 131
Chapter 14: Binomial Theorem: Any Index 133-150
Euler's proof of the binomial theorem for any index 134
General term of the expansion of $(1+x)^{n}$ 136
Examples XIV (a) 137
Expansion of $(1+x)^{n}$ is only arithmetically intelligible when $x<1$ 138
The expression $(x+y)^{n}$ can always be expanded by the binomial theorem 139
General term of the expansion of $(1-x)^{-n}$ 139
Particular cases of the expansions of $(1-x)^{-n}$ Approximations obtained by the binomial theorem 140
Examples XIV (b) 143
Numerically greatest term in the expansion of $(1+x)^{n}$ 144
Number of homogeneous products of r dimensions formed out of n letter 145
Number of terms in the expansions of a multinomial 146
Number of combination of n things r at a time, repetitions being allowed 146
Examples XIV (c) 148
Chapter 15: Multinomial Theorem 151-154
General term in the expansion of $\left(a+b x+c x^{2}+d x^{3}+\right.$ $)^{p}$, when p is a positive integer 151
General term in the expansion of $\left(a+b x+c x^{2}+d x^{3}+\ldots \ldots\right)$, when n is a rational quantity 152
Examples XV 154
Chapter 16: Logarithms 155-164
Definition. $N=a \log _{a} N$ 155
Elementary propositions 156
Examples XVI (a) 157
Common Logarithms 158
Determination of the characteristics by inspection 159
Advantages of logarithms to base 10 159
Advantages of always keeping the mantissa positive 160
Given the logarithms of all numbers to base a, to find the logarithms to base b. 161
$\log _{a} b \times \log _{b} a=1$ 161
Examples XVI (b) 163
Chapter 17: Exponential and Logarithmic Series 165-174
Expansion of a^{x} series for e 165
e is the limit of $\left(1+\frac{1}{n}\right)^{n}$ when n is infinite 166
Expansion of $\log (1+x)$ 168
Construction of tables of logarithms 169
Rapidly converging series for $\log (n+1)-\log n$ 170
The quantity e is incommensurable 171
Examples XVII 172
Chapter 18: Interest and Annuities 175-182
Interest and Amount of a given sum at simple interest 175
Present value and discount of a given sum at simple interest 175
Interest and amount of a given sum at compound interest 176
Nominal and true annual rates of interest 176
Case of compound interest payable every moment 177
Present value and discount of a given sum at compound interest 177
Examples XVIII (a) 178
Annuities, definitions 179
Amount of unpaid annuity simple interest 179
Amount of unpaid annuity, compound interest 179
Present value of an annuity, compound interest 179
Number of years' purchase 180
Present value of a deferred annuity, compound interest 180
Find for the renewal of a lease 181
Examples XVII (b) 182
Chapter 19: Inequalities 183-192
Elementary propositions 183
Arithmetic mean of two positive quantities is greater than the geometriomean 184The sum of the quantities being given, their product is greatest whenthey are equal: product being given, the sum is least when theyare equal185
The arithmetic mean of a number of positive quantities is greater than the geometric mean 185
Given sum of $a, b, c, \ldots \ldots$; to find the greatest value of $a^{m} b^{n} c^{p}$ 185
Easy cases of maxima and minima 186
Examples XIX (a) 187The arithmetic mean of the m th powers of a number of positivequantities is greater than m the power of their arithmetic mean,except when m lies between 0 and 1188If a and b are positive integer, and $a>b,\left(1+\frac{x}{a}\right)^{a}>\left(1+\frac{x}{b}\right)^{b}$189
If $1>x>y>0 \sqrt{\frac{a+x}{1-x}}>\sqrt{\frac{1+y}{1-y}}$ 190$a^{a} b^{b}>\left(\frac{a+b}{2}\right)^{a+b}$190
Examples XIX (b)191
Chapter 20: Limiting Values and Vanishing Fractions 193-200
Definition Limit 193
Limit of $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$ is a_{0} when x is zero 194
By taking x small enough, any term of the series $a_{0}+a_{1} x+a_{2} x^{2}+\ldots$. may be made as large as we please compared with the sum of all that follow it; an by taking x large enough, any term may be made as large as we please compared with the sum of all that precede it 194
Method of determining the limits of vanishing fractions 196
Discussion of some peculiarities in the solution of simultaneous equations 198
Peculiarities in the solutions of quadratic equations 198
Examples XX 199
Chapter 21: Convergency and Divergency of Series 201-221
Case of terms alternately positive and negative 202
Series is convergent if $\operatorname{Lim} \frac{u_{n}}{u_{n-1}}$ is less than 1 204

Comparison of $\Sigma u_{n} u n$ with an auxiliary series Σv_{n} 205
The auxiliary series $\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\ldots . \quad 205$
Application to Binomial, Exponential, Logarithmic Series 208
Limits of $\frac{\log n}{n}$ and $n x^{n}$, when n is infinite 208
Product of an infinite number of factors 209
Examples XXI (a) 211
u-series is convergent when v-series is convergent
if $\frac{u_{n}}{u_{n-1}}>\frac{v_{n}}{v_{n-1}}$
Series is convergent if $\operatorname{Lim}\left\{n\left(\frac{u_{n}}{u_{n-1}}\right)\right\}>1$
Series is convergent if $\operatorname{Lim}\left\{n \log \frac{n_{n}}{u_{n+1}}\right\}>1 \quad 215$

$$
\begin{equation*}
\text { Series compared with series } \Sigma a^{n} \Phi(n) \tag{216}
\end{equation*}
$$

The auxiliary series $\sum \frac{1}{n(\log n)^{p}}$
Series is convergent if $\operatorname{Lim}\left[\left\{n\left(\frac{u_{n}}{u_{n+1}}-1\right)\right\} \log n\right]>1$
Product of two infinite series
Examples XXI (b) 220
Chapter 22: Undetermined Coefficients 222-228
If the equation $f(x)=0$ has more than n roots, it is an identity 223
Proof of principle of undetermined coefficients for finite series 223
Examples XXII (a) 225
Proof of principle of undetermined coefficients for infinite series 225
Examples XXII (b) 228
Chapter 23: Partial Fractions 229-234
Decomposition into partial fractions 229
Use of partial fractions in expansions 232
Examples XXIII 233
Chapter 24: Recurring Series 235-239
Scale of relation 236
Sum of a recurring series 236
Generating function 237
Examples XXIV 239
Chapter 25: Continued Fractions 240-249
Conversion of a fraction into a continued fraction 240
Convergents are alternately less and greater than the continued fraction 241
Law of formation of the successive convergents 242
$p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n}$ 243
Examples XXV (a) 244
The convergents gradually approximate to the continued fraction 245
Limits of the error in taking any convergent for the continued fraction 245
Each convergent is nearer to the continued fraction than a fraction with smaller denominator 246
$\frac{p p^{\prime}}{q q^{\prime}},>$ or $<x^{2}$, according as $\frac{p}{q}>$ or $\frac{p^{\prime}}{q^{\prime}}$ 247
Examples XXV (b) 248
Chapter 26: Indeterminate Equations of the First Degree 250-256
Solution of $a x-b y=c$ 250
Given one solution, to find the general solution 252
Solution of $a x+b y=c$ 252
Given one solution, to find the general solution 252
Number of solutions of $a x+b y=c$ 252
Solution of $a x+b y+c z=d, a^{\prime} x+b^{\prime} y+c^{\prime} z=d^{\prime}$ 254
Examples XXVI 255
Chapter 27: Recurring Continued Fractions 257-266
Numerical example 257
A periodic continued fraction is equal to a continued surd 258
Examples XXVII (a) 259
Conversion of a quadratic surd into a continued fraction 260
The quotients recur 261
The period ends with a partial quotient $2 a_{1}$ 262
The partial quotients equidistant from first and last are equal 263
The penultimate convergents if the periods 263
Examples XXVII (b) 265
Chapter 28: Indeterminate Equations of the 267-274 Second Degree
Solution of $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ 267
The equation $x^{2}-N y^{2}=1$ can always be solved 268
Solution of $x^{2}-N y^{2}=-1$ 269
General Solution of $x^{2}-N y^{2}=1$ 269
Solution of $x^{2}-n^{2} y^{2}=a$ 271
Diophantine problems 272
Examples XXVIII 273
Chapter 29: Summation of Series 275-298
Summary of previous methods 275
u_{n} the product of n factors in AP 276
u_{n} the reciprocal of the product of n factors in AP 278
Method of subtraction 280
Expression of u_{n} as sum of factorials 280
Polygonal and Figurate Numbers 281
Pascal's Triangle 282
Examples XXIX (a) 283
Method of Differences 284
Method succeeds when u_{n} is a rational integral function of n 284
If a_{n} is a rational integral function of n, the series $\sum a_{n} x^{n}$ is a recurring series 287
Further cases of recurring series 289
Examples XXIX (b) 291
Miscellaneous methods of summation 292
Sum of series $1^{r}+2^{r}+3^{r}+\ldots+n^{r}$ 294
Bernoulli's numbers 295
Examples XXIX (c) 296
Chapter 30: Theory of Numbers 299-312
Statement of principles 299
Number of primes of infinite 300
No rational algebraical formula can represent primes only 300
A number can be resolved into prime factors in only one way 300
Number of divisors of a given integer 300
Number of ways an integer can be resolved into two factors 300
Sum of the divisors of a given integer 301
Highest power of a prime contained in n ! 302
Product of r consecutive integers is divisible by r ! 302
Fermat's theorem $N^{p-1}-1=M(p)$, where p is prime and N prime to p 303
Examples XXX (a) 304
Definition of congruent 305
If a is prime to b, then, $a, 2 a, 3 a, \ldots \ldots(b-1) a$ when divided by a leave different remainders 305
$\phi(a b c d \ldots)=\phi(a) \phi(b) \phi(c) \phi(d)$ 306
$\phi(N)=N\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\left(1-\frac{1}{c}\right)$ 307
Wilson's theorem: $1+(p-1)!=M(p)$, where p is a prime 309
A property peculiar to prime numbers 309
Wilson's theorem (second proof) 309
Proofs by induction 309
Examples $X X X$ (b) 310
Chapter 31: The General Theory of Continued Fractions 313-325
Law of formation of successive convergents 313
$\frac{b_{1}}{a_{1}+} \frac{b_{2}}{a_{2}+} \ldots$ has a definite value if $\operatorname{Lim} \frac{a_{n} a_{n+1}}{b_{n+1}}>0$ 315
The convergents to $\frac{b_{1}}{a_{1}-} \frac{b_{2}}{a_{2}-} \ldots$ are positive proper fractions
in ascending order of magnitude, if $a_{n}<1+b_{n}$ 316
General value of covergent when a_{n} and b_{n} are constant 317
Cases where general value of convergent can be found 318
$\frac{b_{1}}{a_{1}+} \frac{b_{2}}{a_{2}+\ldots}$ is incommensurable, if $\frac{b_{n}}{a_{n}}<1$ 319
Examples XXXI (a) 320
Series expressed as continued fractions 322
Conversion of one continued fraction into another 322
Examples XXXI (b) 324
Chapter 32: Probability 326-355
Definitions and illustrations, simple events 326
Examples XXXII (a) 329
Compound events 329
Probability that two independent events will both happen is $p p^{\prime}$ 330
The formula holds also for dependent events 331
Chance of an event which can happen in mutually exclusive ways 332
Examples XXXII (b) 335
Chance of an event happening exactly r times in n trials 336
Expectation and probable value 337
"Problem of points" 338
Examples XXXII (c) 340
Inverse probability 341
Statement of Bernoulli's theorem 341
Proof of formula $Q_{r}=\frac{p_{r} P_{r}}{\Sigma(p P)}$ 342
Concurrent testimony 345
Traditionary testimony 346
Examples XXXII (d) 347
Local probability: Geometrical methods 348
Miscellaneous examples 349
Examples XXXII (e) 352
Chapter 33: Determinants 356-371
Eliminant of two homogeneous linear equations 356
Eliminant of three homogeneous linear equations 356
Determinant is not altered by interchanging rows and columns 357
Development of determinant of third order 357
Sign of a determinant is altered by interchanging two adjacent rows or columns 358
If two rows of columns are identical, the determinant vanishes 358
A factor common to any row or column may be placed outside 359
Cases where constituents are made up of a number of terms 359
Reduction of determinants by simplification of rows or columns 359
Product of two determinants 362
Examples XXXIII (a) 364
Application to solution of simultaneous equations 366
Determinant of fourth order 366
Determinant of any order 367
Notation $\Sigma=a_{1} b_{2} c_{3} d_{4}$ 368
Examples XXXIII (b) 370
Chapter 34: Miscellaneous Theorems and Examples 372-389
Review of the fundamental laws of algebra 372
$f(x)$ when divided by $x-a$ leaves remainder $f(a)$ 374
Quotient of $f(x)$ when divided by $x-a$ 374
Method of detached coefficients 375
Horner's method of synthetic division 376
Symmetrical and alternating function 377
Examples of identities worked out 378
List of useful formula 379
Examples XXXIV (a) 379
Identities proved by properties of cube roots of unity 381
Linear factors of $a^{3}+b^{3}+c^{3}-3 a b c$ 381
Value of $a^{n}+b^{n}+c^{n}$ when $a+b+c=0$ 382
Examples XXXIV (b) 383
Elimination 384
Elimination by symmetrical functions 384
Euler's method of elimination 385
Sylvester's dialytic method 385
Bezout's Method 386
Miscellaneous examples of elimination 387
Examples XXXIV (c) 388
Chapter 35: Theory of Equations 390-421
Every equation of the $n^{\text {th }}$ degree has n roots and no more 390
Relations between the roots and the coefficients 391
These relations are not sufficient for the solution 392
Cases of solution under given conditions 393
Easy cases of symmetrical functions of the roots 393
Examples $X X X V$ (a) 394
Imaginary and surd roots occur in pairs 395
Formation and solution of equations with surd roots 396
Descartes' rule of signs 397
Examples $X X X V$ (b) 398
Value of $f(x+h)$. Derived functions 399
Calculation of $f(x+h)$ by Horner's process 400
$f(x)$ changes its value gradually 401
if $f(a)$ and $f(b)$ are of contrary sings, $f(x)=0$ has root between a and b 401
An equation of an odd degree has one real root 401
An equation of an even degree with its last term negative has two real roots 401
If $f(x)=0$ has r roots equal to $a, f^{\prime}(x)=0$, has
$r-1$ roots equal to a 402
Determination of equal roots 403
$\frac{f^{\prime}(x)}{f(x)}=\frac{1}{x-a}+\frac{1}{x-b}+\frac{1}{x-c}+\ldots$ 404
Examples XXXV (c) 405
Transformation of equations 406
Equation with roots of sign opposite of those of $f(x)=0$ 406
Equation with roots reciprocals of those of $f(x)=0$ 407
Discussion of reciprocal equations 408
Equation with roots squares of those of $f(x)=0$ 409
Equation with roots given functions of those of $f(x)=0$ 410
Removal of an assigned term
411
411
Equation with roots given function of those of $f(x)=0$ 411
Examples $X X X V(d)$
Examples $X X X V(d)$
412
412
Cubic equations. Cardan's solution 414
Discussion of the solution
414
414
Solution by Trigonometry in the irreducible case 416
Biquadratic equations, Ferrari's solution 416
Descartes' Solution
417
417
Undetermined multipliers
418
418
Discrimination cubic; roots all real 418
Solution of three simultaneous equations $\frac{x}{a+\lambda}+\frac{y}{b+\lambda}+\frac{z}{c+\lambda}=1$,and c
420
Examples $X X X V$ (e)
420
420
Miscellaneous Examples
422-449
422-449
Answers to the Examples 450-486

