Contents

Preface	ψ
Chapter 1: Ratio	1–11
Commensurable and incommensurable quantitie	es 2
Ratio greater and less inequality	2
$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \dots = \left(\frac{pa^{n} + qc^{n} + re^{n} + \dots}{pb^{n} + qd^{n} + rj^{n} + \dots}\right)^{\frac{1}{n}}$	3
$\frac{a_1 + a_2 + a_3 + \dots + a_n}{b_1 + b_2 + b_3 + \dots + a_n}$ lies between greatest and	d least of fraction
$\frac{a_1}{b_1}$,, $\frac{a_n}{b_n}$	5
Cross multiplication	7
Eliminant of three linear equations	8
Examples I	9
Chapter 2: Proportion	12–18
Definitions and Propositions	12
Comparison between algebraical and geometric	al definitions 14
Case of incommensurable quantities	16
Examples II	17
Chapter 3: Variation	19–24
if $A \propto B$, then $A = mB$	20
Inverse variation	20
Joint variation	20
If $A \propto B$, with C is constant and $A \propto C$ when E	is constant, then
A = mBC	22
Illustrations. Examples on joint variation	23
Examples III	23

X CONTENTS	
Chapter 4: Arithmetical Progression	25-32
Sum of <i>n</i> terms of an arithmetical series	25
Fundamental formulae	26
Insertion of arithmetic means	26
Examples IV (a)	28
Discussion of roots of $dn^2 + (2a - d)n - 2s = 0$	29
Examples IV (b)	31
Chapter 5: Geometrical Progression	33-41
Insertion of geometric means	34
Sum of <i>n</i> terms of a geometrical series	34
Sum of an infinite geometrical series	35
Examples V (a)	37
Proof of rule for the reduction of a recurring decimal	38
Sum of n terms of an arithmetic and geometric series	39
Examples V (b)	40
Chapter 6: Harmonical Progression: Theorems	42-50
Connected with the Progressions	
Reciprocals of quantities in HP are in AP	42
Harmonic Mean	42
Formulae connecting AM, GM, HM	43
Hints for solution of questions in Progressions	44
Sum of squares of the natural numbers	44
Some of cubes of the natural numbers	45
Σ notation	46
Examples VI (a)	46
Number of shot in pyramid on a square base	47
Pyramid on a triangular base	47
Pyramid on rectangular base	47
Incomplete pyramid	48
Examples VI (b)	49
Chapter 7: Scales of Notation	51–59
Explanation of systems of notation	51
Examples VII (a)	52
Expression on an integral number in a proposed scale	53
Expression of a radix fraction in a proposed scale	55
The difference between a number and the sum of	
its digits is divisible by $r-1$	56
Proof or rule for "casting out the nines"	56

	CONTENTS	xi
Test of divisibility by $r + 1$		56
Examples VII (b)		57
Chapter 8: Surds and Imaginary Quanti	ities	60-74
Rationalising the denominator of $\frac{a}{\sqrt{b} + \sqrt{c} + \sqrt{c}}$	$\overline{\overline{d}}$	60
Rationalising factor of $\sqrt[p]{a} + \sqrt[q]{b}$		60
Square root of $a + \sqrt{b} + \sqrt{c} + \sqrt{d}$		62
Cube root of $a + \sqrt{b}$ Examples VIII (a)		62 65
Imaginary quantities		66
$\sqrt{-a} \times \sqrt{-b} = \pm \sqrt{ab}$		67
If $a + ib = 0$, then $a = 0$, $b = 0$		67
If $a + ib = c + id$, then $a = c$, $b = d$		68
Modulus of product is equal to product of mod	uli	68
Square root of $a + ib$		69
Powers of i		71
Cubic roots of unity; $1 + \omega + \omega^2 = 0$		71
Powers of ω		72
Examples VIII (b)		73
Chapter 9: The Theory of Quadratic Equ	uations	75-86
A quadratic equations cannot have more than tw Conditions for real, equal, imaginary roots	wo roots	75 76
Sum of roots = $-\frac{b}{a}$, Product of roots = $\frac{c}{a}$		76
	Children to and and the	74
Formation of equations when the roots are give Conditions that the roots of a quadratic should		76
magnitude and opposite in sign, (2) reciprocals		76
Examples IX (a)		80
For real values of x the expression $ax^2 + bx + c$	has in	
general the same sign as a; exceptions		81
Examples IX (b)		83
Definitions of function, variable, rational integra	al function	84
Condition that $ax^2 + 2hxy + by^2 + 2gx + 2fy + c$		
into two linear factors.	and homomore it to be	84
Condition that $ax^2 + bx + c = 0$ and $a'x^2 + b'x + c = 0$	c' = 0 may have	
common root.	T's Binomial Th	85
Examples IX (c)		85

xii

Chapter 10: Miscellaneous Equations	87-102
Equations involving one unknown quantity	87
Reciprocal equations	90
Examples X (a)	91
Equations involving two unknown quantities	92
Homogeneous equations	93
Examples X (b)	95
Equations involving several unknown quantities	96
Examples X (c)	98
Indeterminate equations; easy numerical examples	99
Examples $X(d)$	101
Chapter 11: Permutations and Combinations	103-117
Preliminary proposition	103
Number of Permutations of n things r at a time	103
Number of combinations of <i>n</i> things <i>r</i> at a time	105
The number of combinations of n things r at a time is	100
equal to the number of combinations of n things $n - r$ at a time	106
Number of way in which $m + n + p + \dots$ things can be divided into	
classes containing m, n, p,things severally	107
Examples XI (a)	109
Signification of the terms 'like' and 'unlike'	111
Number of arrangement of n things taken all at a time when p things	
are alike of one kind, q things are alike of a second kind and c.	111
Number of permutations of <i>n</i> things <i>r</i> at a time, when each may be	
repeated	112
The total number of combinations of <i>n</i> things	113
To find for what value of r the expression ${}^{n}c_{r}$ is greatest	113
A b initio proof of the formula for the number of combination	
of <i>n</i> things <i>r</i> at a time	113
Total number of selections $p + q + r + \dots$ things, where of p are	
alike of one kind, q alike of a second kind and c .	115
Examples XI (b)	116
Chapter 12: Mathematical Induction	118-120
Illustrations of the method of proof	118
Product of <i>n</i> binomial factors of the form $x + a$	118
Examples XII	120
Chapter 13: Binomial Theorem: Positive Integral Index	121-132
Expression of $(x + a)^n$, when n is a positive integer	122
General term of the expansion	124

CONTENTS	XIII
The expansion may be made to depend upon the case in which	
the first term is unity	124
Second proof of the binomial theorem	125
Examples XIII (a)	126
The coefficients of terms equidistance from the beginning and	
end are equal	127
Determination of the greatest term	127
Sum of coefficients	129
Sum of coefficients of odd terms is equal to sum of coefficients	
of even terms	129
Expansion of multinomials	130
Examples XIII (b)	131
Chapter 14: Binomial Theorem: Any Index	133-150
Euler's proof of the binomial theorem for any index	134
General term of the expansion of $(1 + x)^n$	136
Examples XIV (a)	137
Expansion of $(1 + x)^n$ is only arithmetically intelligible when $x < 1$	138
The expression $(x + y)^n$ can always be expanded by the	
binomial theorem	139
General term of the expansion of $(1 - x)^{-n}$	139
Particular cases of the expansions of $(1 - x)^{-n}$	
Approximations obtained by the binomial theorem	140
Examples XIV (b)	143
Numerically greatest term in the expansion of $(1 + x)^n$	144
Number of homogeneous products of r dimensions formed out	
of <i>n</i> letter	145
Number of terms in the expansions of a multinomial	146
Number of combination of n things r at a time, repetitions	
being allowed	146
Examples XIV (c)	148
Chapter 15: Multinomial Theorem	151-154
General term in the expansion of $(a + bx + cx^2 + dx^3 +)^p$,	
when p is a positive integer	151
General term in the expansion of $(a + bx + cx^2 + dx^3 +)$,	
when <i>n</i> is a rational quantity	152
Examples XV	154
Chapter 16: Logarithms	155-164
Definition. $N = a \log_a N$	155
	155

	Elementary propositions	156
	Examples XVI (a)	157
	Common Logarithms	158
	Determination of the characteristics by inspection	159
	Advantages of logarithms to base 10	159
	Advantages of always keeping the mantissa positive	160
	Given the logarithms of all numbers to base a, to find	
	the logarithms to base b.	161
	$\log_a b \times \log_b a = 1$	161
	Examples XVI (b)	163
С	hapter 17: Exponential and Logarithmic Series	165-174
	Expansion of a^x series for e	165
	<i>e</i> is the limit of $\left(1+\frac{1}{n}\right)^n$ when <i>n</i> is infinite	166
	Expansion of log $(1 + x)$	168
	Construction of tables of logarithms	169
	Rapidly converging series for $\log (n + 1) - \log n$	109
	The quantity e is incommensurable	170
	Examples XVII	171
C	hapter 18: Interest and Annuities	175-182
	Interest and Amount of a given sum at simple interest	175
	Present value and discount of a given sum at simple interest	175
	Interest and amount of a given sum at compound interest	176
	Nominal and true annual rates of interest	176
	Case of compound interest payable every moment	177
	Present value and discount of a given sum at compound interest	177
	Examples XVIII (a)	178
	Annuities, definitions	179
	Amount of unpaid annuity simple interest	179
	Amount of unpaid annuity, compound interest	179
	Present value of an annuity, compound interest	179
	Number of years' purchase	180
	Present value of a deferred annuity, compound interest	180
	Find for the renewal of a lease	181
	Examples XVII (b)	182
h	apter 19: Inequalities	183-192
	Elementary propositions	183

xiv

C

CONTENTS		
----------	--	--

Arithmetic mean of two positive quantities is greater than the	
geometriomean	184
The sum of the quantities being given, their product is greatest wh they are equal: product being given, the sum is least when they	en
are equal The arithmetic mean of a number of positive quantities is greater	185
	185
than the geometric mean Given sum of a, b, c,; to find the greatest value of $a^m b^n c^p$	185
Easy cases of maxima and minima	186
Easy cases of maxima and minima Examples XIX (a)	187
The arithmetic mean of the <i>m</i> th powers of a number of positive	101
quantities is greater than <i>m</i> the power of their arithmetic mean,	
except when m lies between 0 and 1	188
If a and b are positive integer, and $a > b$, $\left(1 + \frac{x}{a}\right)^a > \left(1 + \frac{x}{b}\right)^b$	189
If $1 > x > y > 0$ $\sqrt{\frac{a+x}{1-x}} > \sqrt{\frac{1+y}{1-y}}$	190
$a^a b^b > \left(\frac{a+b}{2}\right)^{a+b}$	190
Examples XIX (b)	191
Chapter 20: Limiting Values and Vanishing Fractions	193-200
Definition Limit	193
Limit of $a_0 + a_1x + a_2x^2 + a_3x^3 + \dots$ is a_0 when x is zero	194
By taking x small enough, any term of the series $a_0 + a_1x + a_2x^2 + .$	
may be made as large as we please compared with the sum of all that follow it; an by taking x large enough, any term may be made	
as large as we please compared with the sum of all that precede it	194
Method of determining the limits of vanishing fractions	196
Discussion of some peculiarities in the solution of simultaneous	
equations	198
Peculiarities in the solutions of quadratic equations	198
Examples XX	199
hapter 21: Convergency and Divergency of Series	201-221
Case of terms alternately positive and negative	202
Series is convergent if Lim $\frac{u_n}{1}$ is less than 1	204

 u_{n-1}

xv

xvi

1.000		
	Comparison of Σu_n un with an auxiliary series Σv_n	205
	The auxiliary series $\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots$	205
	Application to Binomial, Exponential, Logarithmic Series	208
	Limits of $\frac{\log n}{n}$ and nx^{n} , when n is infinite	208
	Product of an infinite number of factors	209
	Examples XXI (a)	211
	u-series is convergent when v-series is convergent	
	if $\frac{u_n}{u_{n-1}} > \frac{v_n}{v_{n-1}}$	212
	u_{n-1} v_{n-1}	1.0 ina. p
	Series is convergent if Lim $\left\{n\left(\frac{u_n}{u_{n-1}}\right)\right\} > 1$	
	Series is convergent if $\lim_{n \to \infty} \left \frac{u_{n-1}}{u_{n-1}} \right > 1$	213
	$\begin{bmatrix} n_n \end{bmatrix}$	
	Series is convergent if Lim $\left\{ n \log \frac{n_n}{u_{n+1}} \right\} > 1$	215
	Series compared with series $\sum a^n \Phi(n)$	216
	The auxiliary series $\sum \frac{1}{n (\log n)^p}$	217
	Series is convergent if $\operatorname{Lim}\left[\left\{n\left(\frac{u_n}{u_{n+1}}-1\right)\right\}\log n\right] > 1$	217
	Product of two infinite series	219
	Examples XXI (b)	220
C	hapter 22: Undetermined Coefficients	222-228
	If the equation $f(x) = 0$ has more than <i>n</i> roots, it is an identity	223
	Proof of principle of undetermined coefficients for finite series	223
	Examples XXII (a)	225
	Proof of principle of undetermined coefficients for infinite series	225
	Examples XXII (b)	228
CI	hapter 23: Partial Fractions	229-234
	Decomposition into partial fractions	229
	Use of partial fractions in expansions	232
	Examples XXIII	233
CI	napter 24: Recurring Series	235-239
	Scale of relation	236
	Sum of a recurring series	236

CONTENTS	xvii
Generating function	237
Examples XXIV	239
Chapter 25: Continued Fractions	240-249
Conversion of a fraction into a continued fraction	240
Convergents are alternately less and greater than the continued	
fraction	241
Law of formation of the successive convergents	242
$p_n q_{n-1} - p_{n-1} q_n = (-1)^n$	243
Examples XXV (a)	244
The convergents gradually approximate to the continued fraction	245
Limits of the error in taking any convergent for the continued	
fraction	245
Each convergent is nearer to the continued fraction than a	Lay (ch
fraction with smaller denominator	246
$\frac{pp'}{qq'}$, > or < x^2 , according as $\frac{p}{q}$ > or $\frac{p'}{q'}$	247
<i>qq q q q y y Examples XXV (b)</i>	248
Chapter 26: Indeterminate Equations of the First Degree	250-256
Solution of $ax - by = c$	250
Given one solution, to find the general solution	252
Solution of $ax + by = c$	252
Given one solution, to find the general solution	252
Number of solutions of $ax + by = c$	252
Solution of $ax + by + cz = d$, $a'x + b'y + c'z = d'$	254
Examples XXVI	255
Chapter 27: Recurring Continued Fractions	257-266
Numerical example	257
A periodic continued fraction is equal to a continued surd	258
Examples XXVII (a)	259
Conversion of a quadratic surd into a continued fraction	260
The quotients recur	261
The period ends with a partial quotient $2a_1$	262
The partial quotients equidistant from first and last are equal	263
The penultimate convergents if the periods	263
Examples XXVII (b)	265
Chapter 28: Indeterminate Equations of the Second Degree	267–274
Solution of $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$	267

XVIII	
~~	

CONTENTS

The equation $x^2 - Ny^2 = 1$ can always be solved	268
Solution of $x^2 - Ny^2 = -1$	269
General Solution of $x^2 - Ny^2 = 1$	269
Solution of $x^2 - n^2 y^2 = a$	271
Diophantine problems	272
Examples XXVIII	273
Chapter 29: Summation of Series	275-298
Summary of previous methods	275
u_n the product of <i>n</i> factors in AP	276
u_n the reciprocal of the product of <i>n</i> factors in AP	278
Method of subtraction	280
Expression of u_n as sum of factorials	280
Polygonal and Figurate Numbers	281
Pascal's Triangle	282
Examples XXIX (a)	283
Method of Differences	284
Method succeeds when u_n is a rational integral function of n	284
If a_n is a rational integral function of <i>n</i> , the series $\sum a_n x^n$ is	
a recurring series	287
Further cases of recurring series	289
Examples XXIX (b)	291
Miscellaneous methods of summation	292
Sum of series $1^r + 2^r + 3^r + + n^r$	294
Bernoulli's numbers	295
Examples XXIX (c)	296
Chapter 30: Theory of Numbers	299-312
Statement of principles	299
Number of primes of infinite	300
No rational algebraical formula can represent primes only	300
A number can be resolved into prime factors in only one way	300
Number of divisors of a given integer	300
Number of ways an integer can be resolved into two factors	300
Sum of the divisors of a given integer	301
Highest power of a prime contained in n!	302
Product of r consecutive integers is divisible by r!	302
Fermat's theorem $N^{p-1} - 1 = M(p)$, where p	
is prime and N prime to p	303
Examples XXX (a)	304
Definition of congruent	305

CONTENTS	xix
If a is prime to b, then, a, 2a, $3a,,(b-1)$ a when divided by	
a leave different remainders	305
$\phi (abcd) = \phi (a) \phi (b) \phi (c) \phi (d)$	306
$\phi(N) = N \left(1 - \frac{1}{a} \right) \left(1 - \frac{1}{b} \right) \left(1 - \frac{1}{c} \right)$	307
Wilson's theorem: $1 + (p - 1)! = M(p)$, where p is a prime	309
A property peculiar to prime numbers	309
Wilson's theorem (second proof)	309
Proofs by induction	309
Examples XXX (b)	310
Chapter 31: The General Theory of Continued Fractions	s 313–325
Law of formation of successive convergents	313
$\frac{b_1}{a_1 + a_2 + \dots} \text{ has a definite value if Lim } \frac{a_n a_{n+1}}{b_{n+1}} > 0$	315
$\overline{a_1 + a_2 + \dots}$ mas a definite value if $\overline{b_{n+1}} \rightarrow 0$	515
The convergents to $\frac{b_1}{a_1 - a_2} = \frac{b_2}{a_2 - a_2}$ are positive proper fractions	
in ascending order of magnitude, if $a_n < 1 + b_n$	316
	317
Cases where general value of convergent can be found	318
$\frac{b_1}{a_1 + a_2 + \dots}$ is incommensurable, if $\frac{b_n}{a_n} < 1$	319
Examples XXXI (a)	320
Series expressed as continued fractions	322
Conversion of one continued fraction into another	322
Examples XXXI (b)	324
Chapter 32: Probability	326-355
Definitions and illustrations, simple events	326
Examples XXXII (a)	329
Compound events	329
Probability that two independent events will both	
happen is pp'	330
The formula holds also for dependent events	331
Chance of an event which can happen in mutually	lioning and
exclusive ways	332
Examples XXXII (b)	335
Chance of an event happening exactly r times in n trials	336
Expectation and probable value	337
"Problem of points"	338

С

С

	Examples XXXII (c)	340
	Inverse probability	341
	Statement of Bernoulli's theorem	341
	Proof of formula $Q_r = \frac{p_r P_r}{\Sigma(pP)}$	342
	Concurrent testimony	345
	Traditionary testimony	346
	Examples XXXII (d)	347
	Local probability: Geometrical methods	348
	Miscellaneous examples	349
	Examples XXXII (e)	352
:1	apter 33: Determinants	356-371
	Eliminant of two homogeneous linear equations	356
	Eliminant of three homogeneous linear equations	356
	Determinant is not altered by interchanging rows and columns	357
	Development of determinant of third order	357
	Sign of a determinant is altered by interchanging two adjacent rows	
	or columns	358
	If two rows of columns are identical, the determinant vanishes	358
	A factor common to any row or column may be placed outside	359
	Cases where constituents are made up of a number of terms	359
	Reduction of determinants by simplification of rows or columns	359
	Product of two determinants	362
	Examples XXXIII (a)	364
	Application to solution of simultaneous equations	366
	Determinant of fourth order	366
	Determinant of any order	367
	Notation $\Sigma = a_1 b_2 c_3 d_4$	368
	Examples XXXIII (b)	370
:1	apter 34: Miscellaneous Theorems and Examples	372-389
	Review of the fundamental laws of algebra	372
	f(x) when divided by $x - a$ leaves remainder $f(a)$	374
	Quotient of $f(x)$ when divided by $x - a$	374
	Method of detached coefficients	375
	Horner's method of synthetic division	376
	Symmetrical and alternating function	377
	Examples of identities worked out	378
	List of useful formula	379
	Examples XXXIV (a)	379

	CONTENTS	XXI
-	Identities proved by properties of cube roots of unity	381
	Linear factors of $a^3 + b^3 + c^3 - 3abc$	381
	Value of $a^n + b^n + c^n$ when $a + b + c = 0$	382
	Examples XXXIV (b)	383
	Elimination	384
	Elimination by symmetrical functions	384
	Euler's method of elimination	385
	Sylvester's dialytic method	385
	Bezout's Method	386
	Miscellaneous examples of elimination	387
	Examples XXXIV (c)	388
h	apter 35: Theory of Equations	390-421
	Every equation of the n^{th} degree has <i>n</i> roots and no more	390
	Relations between the roots and the coefficients	391
	These relations are not sufficient for the solution	392
	Cases of solution under given conditions	393
	Easy cases of symmetrical functions of the roots	393
	Examples XXXV (a)	394
	Imaginary and surd roots occur in pairs	395
	Formation and solution of equations with surd roots	396
	Descartes' rule of signs	397
	Examples XXXV (b)	398
	Value of $f(x + h)$. Derived functions	399
	Calculation of $f(x + h)$ by Horner's process	400
	f(x) changes its value gradually	401
	if $f(a)$ and $f(b)$ are of contrary sings, $f(x) = 0$ has root between	
	a and b	401
	An equation of an odd degree has one real root	401
	An equation of an even degree with its last term negative has	
	two real roots	401
	If $f(x) = 0$ has r roots equal to a, $f'(x) = 0$, has	
	r-1 roots equal to a	402
	Determination of equal roots	403
	$\frac{f'(x)}{f(x)} = \frac{1}{x-a} + \frac{1}{x-b} + \frac{1}{x-c} + \dots$	404
	Examples XXXV (c)	405
	Transformation of equations	406
	Equation with roots of sign opposite of those of $f(x) = 0$	406
	Equation with roots reciprocals of those of $f(x) = 0$	407

C

CONTENTS

Discussion of reciprocal equations	408
Equation with roots squares of those of $f(x) = 0$	409
Equation with roots given functions of those of $f(x) = 0$	410
Removal of an assigned term	410
Equation with roots given function of those of $f(x) = 0$	411
Examples XXXV (d)	411
Cubic equations. Cardan's solution	
Discussion of the solution	414
Solution by Trigonometry in the irreducible case	414
Biquadratic equations, Ferrari's solution	416
Descartes' Solution	416
Undetermined multipliers	417
Discrimination cubic; roots all real	418
	418
Solution of three simultaneous equations $\frac{x}{a+\lambda} + \frac{y}{b+\lambda} + \frac{z}{c+\lambda} = 1$	Statisan
$a + \lambda b + \lambda c + \lambda = 1$,
and c	420
Examples XXXV (e)	420
Miscellaneous Examples	422-449
Answers to the Examples	450-486