
Contents

1 Introduction (or, Why I Wrote This Book) 1

2 Who This Book is For 5

3 Goals, Part I: “Soft” Goals of This Book 9

4 Goals, Part 2: Concrete Goals 13

5 Goals, Part 3: A Disclaimer 15

6 Question Everything 17

7 Rules for Programming in this Book 23

8 One Rule for Reading this Book 27

9 What is “Functional Programming”? 29

10 What is This Lambda You Speak Of? 39

! 1 The Benefits of Functional Programming 43

12 Disadvantages of Functional Programming 59

13 The “Great FP Terminology Barrier” 75

14 Pure Functions 81

15 Benefits of Pure Functions 89

16 Pure Functions and I/O 97

17 Pure Function Signatures Tell All 101

18 Functional Programming as Algebra 107

19 A Note About Expression-Oriented Programming 119

20 Functional Programming is Like Unix Pipelines 123

21 Functions Are Variables, Too 137

22 Using Methods As If They Were Functions 151

23 How to Write Functions That Take Functions as Input Parameters 161

24 How to Write a ‘map' Function 179

25 How to Use By-Name Parameters 185

26 Functions Can Have Multiple Parameter Groups 197

27 Partially-Applied Functions (and Currying) 211

28 Recursion: Introduction 223

29 Recursion: Motivation 225

30 Recursion: Lets Look at Lists 229

31 Recursion: How to Write a sum' Function 235

32 Recursion: How Recursive Function Calls Work 241

33 Visualizing the Recursive sum Function 245

34 Recursion: A Conversation Between Two Developers 253

35 Recursion: Thinking Recursively 255

36 JVM Stacks and Stack Frames 261

37 A Visual Look at Stacks and Frames 269

38 Tail-Recursive Algorithms 275

39 A First Look at “State” 283

CONTENTS

40 A Functional Game (With a Little Bit of State) 287

CONTENTS

41 A Quick Review of Case Classes 301

42 Update as You Copy, Don t Mutate 305

43 A Quick Review of for-Expressions 315

44 How to Write a Class That Can Be Used in a for-Expression 323

45 Creating a Sequence Class to he Used in a for Comprehension 325

46 Making Sequence Work In a Simple for Loop 331

47 How To Make Sequence Work as a Single Generator in a for Expression 335

48 Enabling Filtering in a for Expression 339

49 How to Enable the Use of Multiple Generators in a for Expression 345

50 A Summary of the for Expression Lessons 355

51 Pure Functions Tell No Lies 357

52 Functional Error Handling (Option, Try, Or, and Either) 363

53 Embrace The Idioms! 373

54 What to Think When You See That Opening Curly Brace 377

55 A Quick Review of How f latMap Works 391

56 Option Naturally Leads to flatMap 397

57 flatMap Naturally Leads to for 401

58 for Expressions are Better Than getOrElse 403

59 Recap: Option flatMap for 407

60 A Note About Things That Can Be Mapped Over 415

61 Starting to Glue Functions Together 417

62 The “Bind” Concept 421

CONTENTS

63 Getting Close to Using bind in for Expressions 427

64 Using a Wrapper Class in a for Expression 429

65 Making Wrapper More Generic 437

66 Changing “new Wrapper” to “Wrapper” 439

67 A Quick Note About Case Classes and Companion Objects 445

68 Using bind in a for Expression * 447

69 How Debuggable, f, g, and h Work 459

70 A Generic Version of Debuggable 471

71 One Last Debuggable: Using L ist Instead of String 475

72 Key Points About Monads 481

73 Signpost: Where Were Going Next 483

74 Introduction: The IÖ Monad 485

75 How to Use an 10 Monad 487

76 Assigning a for Expression to a Function 491

77 The 10 Monad and a for Expression That Uses Recursion 493

78 Diving Deeper Into the 10 Monad 495

79 IT! Come Back to the 10 Monad 501

80 Functional Composition 503

81 An Introduction to Handling State 507

82 Handling State Manually 509

83 Getting State Working in a for Expression 515

84 Handling My Golfing State with a State Monad 517

CONTENTS

85 The State Monad Source Code 523

86 Signpost: Getting Ю and State Working Together 527

87 Trying to Write a for Expression with IO and State 529

88 Seeing the Problem: Trying to Use State and IO Together 531

89 Solving the Problem with Monad Transformers 533

90 Beginning the Process of Understanding S ta te ! 535

91 Getting Started: Were Going to Need a Monad Trait 539

92 Now We Can Create StateT 543

93 Using StateT in a for Expression 545

94 Trying to Combine 10 and S ta te ! in a for Expression 551

95 Fixing the 10 Functions with Monadic Lifting 555

96 A First Ю/StateT for-Expression 559

97 The Final Ю/StateT for Expression 563

98 Summary of the S ta te ! Lessons 567

99 Signpost: Modeling the world with Scala/FP 569

100What is a Domain Model? 57I

101A Review of OOP Data Modeling 573

102Modeling the “Data” Portion of the Pizza POS System with Scala/FP 581

103 First Attempts to Organize Pure Functions 585

104Implementing FP Behavior with Modules 591

lOSImplementing the Pizza POS System Using a Modular Approach 599

106The “Functional Objects” Approach 617

CONTENTS

107Demonstrating the “Functional Objects” Approach 621

108Summary of the Domain Modeling Approaches 627

109The Problem with the IO Monad 629

110Lenses, to Simplify “Update as You Copy” 635

111 Signpost: Concurrency 639

112 Concurrency and Mutability Don’t Mix 641

113 Scala Concurrency Tools 649

114 Akka Actors 653

115 Akka Actor Examples 659

116 Scala Futures 669

117 A Second Futures Example 677

118 Key Points About Scala Futures 689

119 A Few Notes About Real World Functional Programming 691

120 Signpost: Wrapping Things Up 699

121 The Learning Path 701

122Final Summary 703

123 Where To Go From Here 709

