CONTENTS

Preface

xvii

1

1 Introduction to Pharmacokinetics and Pharmacodynamics

- 1.1 Introduction: Drugs and Doses, 1
- 1.2 Introduction to Pharmacodynamics, 3
 - 1.2.1 Drug Effects at the Site of Action, 3
 - 1.2.2 Agonists, Antagonists, and Concentration–Response Relationships, 6
- 1.3 Introduction to Pharmacokinetics, 9
 - 1.3.1 Plasma Concentration of Drugs, 10
 - 1.3.2 Processes in Pharmacokinetics, 11
- 1.4 Dose–Response Relationships, 13
- 1.5 Therapeutic Range, 14
 - 1.5.1 Determination of the Therapeutic Range, 16
- 1.6 Summary, 18

2 Passage of Drugs Through Membranes

- 2.1 Introduction, 20
- 2.2 Structure and Properties of Membranes, 21
- 2.3 Passive Diffusion, 22
 - 2.3.1 Transcellular Passive Diffusion, 24
 - 2.3.2 Paracellular Passive Diffusion, 26
- 2.4 Carrier-Mediated Processes: Transport Proteins, 27
 - 2.4.1 Uptake Transporters: SLC Superfamily, 282.4.2 Efflux Transporters: ABC Superfamily, 29
 - 2.4.3 Characteristics of Transporter Systems, 31
 - vii

- 2.4.4 Simulation Exercise, 32
- 2.4.5 Clinical Examples of Transporter Involvement in Drug Response, 33

3 Drug Administration, Absorption, and Bioavailability

- 3.1 Introduction: Local and Systemic Drug Administration, 37
- 3.2 Common Routes of Systemic Drug Administration, 37
 - 3.2.1 Intravascular Direct Systemic Administration, 37
 - 3.2.2 Extravascular Parenteral Routes, 38
 - 3.2.3 Other Extravascular Routes, 38
- 3.3 Overview of Oral Absorption, 40
- 3.4 Extent of Drug Absorption, 41
 - 3.4.1 Bioavailability Factor, 41
 - 3.4.2 Individual Bioavailability Factors, 42
- 3.5 Determinants of the Bioavailability Factor, 43
 - 3.5.1 Disintegration, 43
 - 3.5.2 Dissolution, 43
 - 3.5.3 Formulation Excipients, 43
 - 3.5.4 Adverse Events Within the Gastrointestinal Lumen, 44
 - 3.5.5 Transcellular Passive Diffusion, 46
 - 3.5.6 Paracellular Passive Diffusion, 47
 - 3.5.7 Uptake and Efflux Transporters, 47
 - 3.5.8 Presytemic Intestinal Metabolism or Extraction, 50
 - 3.5.9 Presystemic Hepatic Metabolism or Extraction, 52
- 3.6 Factors Controlling the Rate of Drug Absorption, 53
 - 3.6.1 Dissolution-Controlled Absorption, 54
 - 3.6.2 Membrane Penetration–Controlled Absorption, 55
 - 3.6.3 Overall Rate of Drug Absorption, 55
- 3.7 Biopharmaceutics Classification System, 55
- Problems, 56

References, 57

4 Drug Distribution

- 4.1 Introduction, 61
- 4.2 Extent of Drug Distribution, 61
 - 4.2.1 Distribution Volumes, 62
 - 4.2.2 Tissue Binding and Plasma Protein Binding: Concentrating Effects, 64
 - 4.2.3 Assessment of the Extent of Drug Distribution: Apparent Volume of Distribution, 65
 - 4.2.4 Plasma Protein Binding, 72
- 4.3 Rate of Drug Distribution, 79
 - 4.3.1 Perfusion-Controlled Drug Distribution, 80
 - 4.3.2 Diffusion-Controlled Drug Distribution, 82

4.4 Distribution of Drugs to the Central Nervous System, 83

Problems, 86

References, 87

- 2.4.4 Simulation Exercise, 32
- 2.4.5 Clinical Examples of Transporter Involvement in Drug Response, 33

3 Drug Administration, Absorption, and Bioavailability

- 3.1 Introduction: Local and Systemic Drug Administration, 37
- 3.2 Common Routes of Systemic Drug Administration, 37
 - 3.2.1 Intravascular Direct Systemic Administration, 37
 - 3.2.2 Extravascular Parenteral Routes, 38
 - 3.2.3 Other Extravascular Routes, 38
- 3.3 Overview of Oral Absorption, 40
- 3.4 Extent of Drug Absorption, 41
 - 3.4.1 Bioavailability Factor, 41
 - 3.4.2 Individual Bioavailability Factors, 42
- 3.5 Determinants of the Bioavailability Factor, 43
 - 3.5.1 Disintegration, 43
 - 3.5.2 Dissolution, 43
 - 3.5.3 Formulation Excipients, 43
 - 3.5.4 Adverse Events Within the Gastrointestinal Lumen, 44
 - 3.5.5 Transcellular Passive Diffusion, 46
 - 3.5.6 Paracellular Passive Diffusion, 47
 - 3.5.7 Uptake and Efflux Transporters, 47
 - 3.5.8 Presytemic Intestinal Metabolism or Extraction, 50
 - 3.5.9 Presystemic Hepatic Metabolism or Extraction, 52
- 3.6 Factors Controlling the Rate of Drug Absorption, 53
 - 3.6.1 Dissolution-Controlled Absorption, 54
 - 3.6.2 Membrane Penetration–Controlled Absorption, 55
 - 3.6.3 Overall Rate of Drug Absorption, 55
- 3.7 Biopharmaceutics Classification System, 55
- Problems, 56

References, 57

4 Drug Distribution

- 4.1 Introduction, 61
- 4.2 Extent of Drug Distribution, 61
 - 4.2.1 Distribution Volumes, 62
 - 4.2.2 Tissue Binding and Plasma Protein Binding: Concentrating Effects, 64
 - 4.2.3 Assessment of the Extent of Drug Distribution: Apparent Volume of Distribution, 65
 - 4.2.4 Plasma Protein Binding, 72
- 4.3 Rate of Drug Distribution, 79
 - 4.3.1 Perfusion-Controlled Drug Distribution, 80
 - 4.3.2 Diffusion-Controlled Drug Distribution, 82

4.4 Distribution of Drugs to the Central Nervous System, 83Problems, 86

References, 87

Drug Elimination and Clearance 5

- 5.1 Introduction, 89
 - 5.1.1 First-Order Elimination, 90
 - 5.1.2 Determinants of the Elimination Rate Constant and the Half-Life, 91
- 5.2 Clearance, 91
 - 5.2.1 Definition and Determinants of Clearance, 91
 - Total Clearance, Renal Clearance, and Hepatic Clearance, 94 5.2.2
 - Relationships Among Clearance, Volume of Distribution, 5.2.3 Elimination Rate Constant, and Half-Life, 95
 - 5.2.4 Primary and Secondary Parameters, 96
- 5.3 Renal Clearance, 97
 - 5.3.1 Glomerular Filtration, 97
 - 5.3.2 Tubular Secretion, 98
 - 5.3.3 Tubular Reabsorption, 100
 - 5.3.4 Putting Meaning into the Value of Renal Clearance, 101
- 5.4 Hepatic Clearance, 102
 - 5.4.1 Phase I and Phase II Metabolism, 103
 - 5.4.2 The Cytochrome P450 Enzyme System, 104
 - 5.4.3 Glucuronidation, 105
 - 5.4.4 Drug–Drug Interactions, 106
 - 5.4.5 Hepatic Drug Transporters, 107
 - 5.4.6 Kinetics of Drug Metabolism, 109
 - 5.4.7 Hepatic Clearance, 111
- 5.5 Measurement of Clearances, 115
 - 5.5.1 Total Body Clearance, 115
 - 5.5.2 Renal Clearance, 117
 - 5.5.3 Fraction of the Drug Excreted Unchanged, 120

Problems, 121

References, 124

Compartmental Models in Pharmacokinetics 126 6

- 6.1 Introduction, 127
- 6.2 Expressions for Component Parts of the Dose–Plasma Concentration Relationship, 127
 - 6.2.1 Effective Dose, 127
 - 6.2.2 Rate of Drug Absorption, 128
 - 6.2.3 Rate of Drug Elimination, 129
 - 6.2.4 Rate of Drug Distribution, 129
- 6.3 Putting Everything Together: Compartments and Models, 130
 - 6.3.1 One-Compartment Model, 130
 - Two-Compartment Model, 131 6.3.2
 - 6.3.3 Three-Compartment Model, 131
- 6.4 Examples of Complete Compartment Models, 133
 - 6.4.1 Intravenous Bolus Injection in a One-Compartment Model with First-Order Elimination, 133

Drug Elimination and Clearance 5

- 5.1 Introduction, 89
 - 5.1.1 First-Order Elimination, 90
 - 5.1.2 Determinants of the Elimination Rate Constant and the Half-Life, 91
- 5.2 Clearance, 91
 - 5.2.1 Definition and Determinants of Clearance, 91
 - 5.2.2 Total Clearance, Renal Clearance, and Hepatic Clearance, 94
 - 5.2.3 Relationships Among Clearance, Volume of Distribution, Elimination Rate Constant, and Half-Life, 95
 - 5.2.4 Primary and Secondary Parameters, 96
- 5.3 Renal Clearance, 97
 - 5.3.1 Glomerular Filtration, 97
 - 5.3.2 Tubular Secretion, 98
 - Tubular Secretion, 98 Tubular Reabsorption, 100 5.3.3
 - Putting Meaning into the Value of Renal Clearance, 101 5.3.4
- 5.4 Hepatic Clearance, 102
 - 5.4.1 Phase I and Phase II Metabolism, 103
 - 5.4.2 The Cytochrome P450 Enzyme System, 104 Application of the Medel, 145 141
 - 5.4.3 Glucuronidation, 105
 - 5.4.4 Drug–Drug Interactions, 106
 - 5.4.5 Hepatic Drug Transporters, 107
 - 5.4.6 Kinetics of Drug Metabolism, 109
 - 5.4.7 Hepatic Clearance, 111
- 5.5 Measurement of Clearances, 115
 - 5.5.1 Total Body Clearance, 115
 - 5.5.2 Renal Clearance, 117
 - 5.5.3 Fraction of the Drug Excreted Unchanged, 120
- Problems, 121

References, 124

Compartmental Models in Pharmacokinetics 126 6

- Introduction, 127 6.1
- 6.2 Expressions for Component Parts of the Dose–Plasma Concentration Relationship, 127
 - 6.2.1 Effective Dose, 127
 - 6.2.2 Rate of Drug Absorption, 128
 - 6.2.3 Rate of Drug Elimination, 1296.2.4 Rate of Drug Distribution, 129
- 6.3 Putting Everything Together: Compartments and Models, 130
 - 6.3.1 One-Compartment Model, 130
 - 6.3.2 Two-Compartment Model, 131
 - 6.3.3 Three-Compartment Model, 131
- 6.4 Examples of Complete Compartment Models, 133
 - 6.4.1 Intravenous Bolus Injection in a One-Compartment Model with First-Order Elimination, 133

- 6.4.2 Intravenous Bolus Injection in a Two-Compartment Model with First-Order Elimination, 134
- 6.4.3 First-Order Absorption in a Two-Compartment Model with First-Order Elimination, 135
- 6.5 Use of Compartmental Models to Study Metabolite Pharmacokinetics, 136
- 6.6 Selecting and Applying Models, 137

Problems, 138

Recommended Reading, 138

Pharmacokinetics of an Intravenous Bolus Injection in a 7 **One-Compartment Model**

- 7.1 Introduction, 140
- 7.2 One-Compartment Model, 140
- 7.3 Pharmacokinetic Equations, 142
 - 7.3.1 Basic Equation, 142
 - 7.3.2 Half-Life, 143
 - 7.3.3 Time to Eliminate a Dose, 143
- 7.4 Simulation Exercise, 144
- 7.5 Application of the Model, 145
 - 7.5.1 Predicting Plasma Concentrations, 145
 - 7.5.2 Duration of Action, 146
 - 7.5.3 Value of a Dose to Give a Desired Initial Plasma Concentration, 147
 - 7.5.4 Intravenous Loading Dose, 147
- 7.6 Determination of Pharmacokinetic Parameters Experimentally, 148
 - 7.6.1 Study Design for the Determination of Parameters, 149
 - 7.6.2 Pharmacokinetic Analysis, 149
- 7.7 Pharmacokinetic Analysis in Clinical Practice, 153

Problems, 155

Recommended Reading, 157

8 Pharmacokinetics of an Intravenous Bolus Injection in a **Two-Compartment Model**

8.1 Introduction, 159

8.2 Tissue and Compartmental Distribution of a Drug, 159

8.2.1 Drug Distribution to the Tissues, 159

- 8.2.2 Compartmental Distribution of a Drug, 160
- 8.3 Basic Equation, 162
 - 8.3.1 Distribution: A, α , and the Distribution $t_{1/2}$, 163
 - 8.3.2 Elimination: *B*, β , and the Beta $t_{1/2}$, 163
- 8.4 Relationship Between Macro and Micro Rate Constants, 164
- 8.5 Primary Pharmacokinetic Parameters, 165
 - 8.5.1 Clearance, 165
 - 8.5.2 Distribution Clearance, 166
 - 8.5.3 Volume of Distribution, 167
- 8.6 Simulation Exercise, 170

139

	8.7	Determination of the Pharmacokinetic Parameters of the	
		Two-Compartment Model, 173 8.7.1 Determination of Intercepts and Macro Rate Constants, 173	
		8.7.2 Determination of the Micro Rate Constants: k_{12} , k_{21} , and k_{10} , 175	
		8.7.3 Determination of the Primary Pharmacokinetic Parameters, 175	
	8.8	Clinical Application of the Two-Compartment Model, 176 8.8.1 Measurement of the Elimination Half-Life in the	
		Postdistribution Phase, 176	
		8.8.2 Determination of the Loading Dose, 177 8.8.3 Evaluation of a Dose: Monitoring Plasma	
	Prot	Concentrations and Patient Response, 179 blems, 180	
	Rec	ommended Reading, 181	
9	Phar	macokinetics of Extravascular Drug Administration	182
	9.1	Introduction, 183	
	9.2	Model for First-Order Absorption in a One-Compartment Model, 184	
		9.2.1 Model and Equations, 184	
		9.2.2 Determination of the Model Parameters, 186	
		9.2.3 Absorption Lag Time, 192	
		9.2.4 Flip-Flop Model and Sustained-Release Preparations, 192	
		9.2.5 Determinants of T_{max} and C_{max} , 194	
	9.3	Bioavailability, 195	
		9.3.1 Bioavailability Parameters, 195	
		9.3.2 Absolute Bioavailability, 197	
		9.3.3 Relative Bioavailability, 198	
		9.3.4 Bioequivalence, 198	
		9.3.5 Example Bioavailability Analysis, 198	
	9.4	Simulation Exercise, 198	
	Prob	blems, 199	
	Rec	ommended Reading, 200	
10	Introduction to Noncompartmental Analysis		201
	10.1	Introduction, 201	
	10.2	Mean Residence Time, 202	
	10.3	Determination of Other Important Pharmacokinetic Parameters 205	
	10.4	Different Routes of Administration, 207	
	10.5 Probl	Application of Noncompartmental Analysis to Clinical Studies, 208 ems, 210	
11	Phar	magakingting of Introvenous Infusion in a One Comportment Madal	212
	rnar	matokineues of fint avenous finusion in a One-Compartment Model	212

- 11.1 Introduction, 213
- 11.2 Model and Equations, 214 11.2.1 Basic Equation, 214

- 11.2.2 Application of the Basic Equation, 216
- 11.2.3 Simulation Exercise: Part 1, 216
- 11.3 Steady-State Plasma Concentration, 217
 - 11.3.1 Equation for Steady-State Plasma Concentrations, 217
 - 11.3.2 Application of the Equation, 217
 - 11.3.3 Basic Formula Revisited, 218
 - 11.3.4 Factors Controlling Steady-State Plasma Concentration, 218
 - 11.3.5 Time to Steady State, 219
 - 11.3.6 Simulation Exercise: Part 2, 220
- 11.4 Loading Dose, 221
 - 11.4.1 Loading-Dose Equation, 221
 - 11.4.2 Simulation Exercise: Part 3, 223
- 11.5 Termination of Infusion, 223
 - Equations for Termination Before and After 11.5.1
 - Steady State, 223
 - 11.5.2 Simulation Exercise: Part 4, 224
- 11.6 Individualization of Dosing Regimens, 224
 - 11.6.1 Initial Doses, 224

11.6.2 Monitoring and Individualizing Therapy, 225 Problems, 227

12 Multiple Intravenous Bolus Injections in the One-Compartment Model 230

- 12.1 Introduction, 231
- 12.2 Terms and Symbols Used in Multiple-Dosing Equations, 232
- 12.3 Monoexponential Decay During a Dosing Interval, 234
 - 12.3.1 Calculation of Dosing Interval to Give Specific Steady-State Peaks and Troughs, 235
- Basic Pharmacokinetic Equations for Multiple Doses, 236 12.4
 - 12.4.1 Principle of Superposition, 236
 - 12.4.2 Equations That Apply Before Steady State, 236
- 12.5 Steady State, 238
 - 12.5.1 Steady-State Equations, 238
 - 12.5.2 Average Plasma Concentration at Steady State, 240
 - 12.5.3 Fluctuation, 242
 - 12.5.4 Accumulation, 243
 - 12.5.5 Time to Reach Steady State, 244
- 12.5.6 Loading Dose, 24512.6 Basic Formula Revisited, 245
- 12.7 Pharmacokinetic-Guided Dosing Regimen Design, 246
 - 12.7.1 General Considerations for Selection of the Dosing Interval, 246
 - 12.7.2 Protocols for Pharmacokinetic-Guided Dosing Regimens, 247
- Simulation Exercise, 251 12.8

Problems, 253

References, 253

254

13 Multiple Intermittent Infusions

- 13.1 Introduction, 254
- Steady-State Equations for Multiple Intermittent Infusions, 256
- 13.3 Monoexponential Decay During a Dosing Interval: Determination of Peaks, Troughs, and Elimination Half-Life, 259
 - 13.3.1 Determination of Half-Life, 259
 - 13.3.2 Determination of Peaks and Troughs, 261
- 13.4 Determination of the Volume of Distribution, 261
- 13.5 Individualization of Dosing Regimens, 264
- 13.6 Simulation Exercise, 265 Problems, 265

14 Multiple Oral Doses

- 14.1 Introduction, 267
- 14.2 Steady-State Equations, 268
 - 14.2.1 Time to Peak Steady-State Plasma Concentration, 269
 - 14.2.2 Maximum Steady-State Plasma Concentration, 270
 - 14.2.3 Minimum Steady-State Plasma Concentration, 271
 - 14.2.4 Average Steady-State Plasma Concentration, 271
 - 14.2.5 Overall Effect of Absorption Parameters on a Steady-State Dosing Interval, 272
- 14.3 Equations Used Clinically to Individualize Oral Doses, 27214.3.1 Protocol to Select an Appropriate Equation, 273
- 14.4 Simulation Exercise, 274
- References, 265

15 Nonlinear Pharmacokinetics

- 15.1 Linear Pharmacokinetics, 277
- 15.2 Nonlinear Processes in Absorption, Distribution, Metabolism, and Elimination, 280
- 15.3 Pharmacokinetics of Capacity-Limited Metabolism, 281

15.3.1 Kinetics of Enzymatic Processes, 282

- 15.3.2 Plasma Concentration–Time Profile, 283
- 15.4 Phenytoin, 284
 - 15.4.1 Basic Equation for Steady State, 285
 - 15.4.2 Estimation of Doses and Plasma Concentrations, 287
 - 15.4.3 Influence of K_m and V_{max} and Factors That Affect These Parameters, 289
 - 15.4.4 Time to Eliminate the Drug, 290
 - 15.4.5 Time to Reach Steady State, 291
 - 15.4.6 Individualization of Doses of Phenytoin, 292

Problems, 295

References, 296

16 Introduction to Pharmacodynamic Models and Integrated Pharmacokinetic–Pharmacodynamic Models

- 16.1 Introduction, 298
- 16.2 Classic Pharmacodynamic Models Based on Traditional Receptor Theory, 299
 - 16.2.1 Receptor Binding, 300
 - 16.2.2 Response–Concentration Models, 302
- 16.3 Empirical Pharmacodynamic Models Used Clinically, 307
 - 16.3.1 Sigmoidal E_{max} and E_{max} Models, 308
 - 16.3.2 Linear Adaptations of the E_{max} Model, 310
- 16.4 Integrated PK–PD Models: E_{max} Model Combined with a PK Model for Intravenous Bolus Injection in a One-Compartment Model, 312
 16.4.1 Simulation Exercise, 314
- 16.5 Hysteresis and the Effect Compartment, 31516.5.1 Simulation Exercise, 318

Problems, 319

References, 321

17 Mechanism-Based Integrated Pharmacokinetic-Pharmacodynamic Models 323

- 17.1 Introduction, 324
- 17.2 Alternative Models for Drug–Receptor Interaction: Operational Model of Agonism, 325
 - 17.2.1 Simulation Exercise, 329
- 17.3 Physiological Turnover Model and Its Characteristics, 329
 - 17.3.1 Points of Drug Action, 330
 - 17.3.2 System Recovery After Change in Baseline Value, 330
- 17.4 Indirect Effect Models, 331
 - 17.4.1 Characteristics of Indirect Effect Drug Responses, 333
 - 17.4.2 Characteristics of Indirect Effect Models Illustrated Using Model I, 334
 - 17.4.3 Other Indirect Models, 340
- 17.5 Transduction and Transit Compartment Models, 340
 - 17.5.1 Simulation Exercise, 343
- 17.6 Tolerance Models, 344
 - 17.6.1 Counter-regulatory Force Model, 345
 - 17.6.2 Precursor Pool Model of Tolerance, 348
- 17.7 Irreversible Drug Effects, 350
 - 17.7.1 Application of the Turnover Model to Irreversible Drug Action, 350
 - 17.7.2 Model for Hematological Toxicity of Anticancer Drugs, 352
- 17.8 Disease Progression Models, 356
 - 17.8.1 Generation of Drug Response, 356
 - 17.8.2 Drug Interaction with a Disease, 356
 - 17.8.3 Disease Progression Models, 356
- Problems, 360

References, 365

Appendix A Review of Exponents and Logarithms

- A.1 Exponents, 368
- A.2 Logarithms: log and ln, 369
- A.3 Performing Calculations in the Logarithmic Domain, 370
 - A.3.1 Multiplication, 370
 - A.3.2 Division, 371
 - A.3.3 Reciprocals, 371
 - A.3.4 Exponents, 371
- A.4 Calculations Using Exponential Expressions and Logarithms, 371
- A.5 Decay Function: e^{-kt} , 373
- A.6 Growth Function: $1 e^{kt}$, 374
- A.7 Decay Function in Pharmacokinetics, 374
- Problems, 375

Appendix B Rates of Processes

- B.1 Introduction, 377
- B.2 Order of a Rate Process, 378
- B.3 Zero-Order Processes, 378
 - B.3.1 Equation for Zero-Order Filling, 378
 - B.3.2 Equation for Zero-Order Emptying, 379
 - B.3.3 Time for Zero-Order Emptying to Go to 50% Completion, 379
- B.4 First-Order Processes, 380
 - B.4.1 Equation for a First-Order Process, 380
 - B.4.2 Time for 50% Completion: The Half-Life, 381
- B.5 Comparison of Zero- and First-Order Processes, 382
- B.6 Detailed Example of First-Order Decay in Pharmacokinetics, 382
 - B.6.1 Equations and Semilogarithmic Plots, 382
 - B.6.2 Half-Life, 383
 - B.6.3 Fraction or Percent Completion of a First-Order Process Using First-Order Elimination as an Example, 384
- B.7 Examples of the Application of First-Order Kinetics to Pharmacokinetics, 385

Appendix C Creation of Excel Worksheets for Pharmacokinetic Analysis

387

- C.1 Measurement of AUC and Clearance, 387
 - C.1.1 Trapezoidal Rule, 388
 - C.1.2 Excel Spreadsheet to Determine $AUC_{0\to\infty}$ and Clearance, 389
- C.2 Analysis of Data from an Intravenous Bolus Injection in a One-Compartment Model, 393
- C.3 Analysis of Data from an Intravenous Bolus Injection in a Two-Compartment Model, 394
- C.4 Analysis of Oral Data in a One-Compartment Model, 398
- C.5 Noncompartmental Analysis of Oral Data, 399

Appendix D Derivation of Equations for Multiple Intravenous Bolus Injections 403

D.1 Assumptions, 403

368

xvi CONTENTS

- D.2 Basic Equation for Plasma Concentration After Multiple Intravenous Bolus Injections, 403
- D.3 Steady-State Equations, 406
- Appendix E Summary of the Properties of the Fictitious Drugs Used in the Text

Else and the second sec

Appendix F Computer Simulation Models

Glossary of Abbreviations and Symbols

Index

410

415