	Figures	
208	MICROCVOLUTION and macrocyolition	T.
2.1	Dynamics of the logistic map	3
2.2	Alternative logistic map	3
2.3	Continuous logistic model	3
2.4	The carrying capacity and intraspecific competition as	
	distribution functions	4
3.1	The prisoner's dilemma	6
3.2	The game of chicken	6
3.3	The ecological theater and evolutionary play	7
5.1	The species with highest carrying capacity survives	11
5.2	The "star" locates the strategy at the equilibrium value for x^*	11
5.3	Strategy dynamics on the adaptive landscape for the	
	Lotka–Volterra model with $\sigma_k^2 = 4$	12
5.4	With $\sigma_k^2 = 12.5$ and $n = 1$, strategy dynamics produces an	
	equilibrium point that is a local minimum	12
5.5	With $n = 2$, strategy dynamics allows for speciation	13
5.6	Low-speed strategy dynamics results in an equilibrium solution	13
5.7	High-speed strategy dynamics results in unstable Darwinian	
	dynamics	13
5.8	With $r = 2.5$, strategy dynamics results in an equilibrium	
	solution for u_1 and a four cycle solution for density	14
5.9	Increasing $r = 2.8$ results in a chaotic solution for the	
	population density	14
6.1	The fitness set, depicted here by the interior of the top shaped	
	region, represents the fitness in habitats A and B as a result	231
	of using every possible stratgy	15
6.2	The rational reaction set is given by the solid line	15
6.3	An ESS coalition of two under chaotic density dynamics	19

List of figures

6.4	When the ESS is strongly dependent on \mathbf{x} , the strategy \mathbf{x}	
	dynamics will also cycle	194
6.5	At a slower rate of evolution, the strategy dynamics becomes	
	smoother	194
6.6	An ESS under non-equilibrium dynamics	195
7.1	At an ESS, $G^*(v)$ must take on a global maximum when	
	$v = u_1$ more more than the time of each graphism when the v	201
7.2	A convergent stable system will return to \mathbf{x}^* when $\mathbf{u} = \mathbf{u}_c$	202
7.3	The solution obtained does not satisfy the ESS maximum	
	principle 223 m	203
7.4	An ESS coalition of two strategies as indicated by the open	
	box and asterix	204
7.5	An ESS coalition of one strategy. Regardless of the number of	
	starting species or their initial strategy values, Darwinian	
	dynamics results in the single-strategy ESS	207
7.6	Decreasing the prey's niche breadth from that of Figure 7.5	
	changes the outcome. When the system is constrained to have	
	a single species, then, regardless of initial conditions, it evolves	
	to a local maximum. This single-species strategy is not an ESS	209
7.7	Darwinian dynamics results in ESS when the system starts	
	with two or more species with sufficiently distinct initial	
	strategy values. However, not all starting conditions need	
	produce this result. For some starting conditions (with two	
	or more species) the system will converge on the single, local,	
	non-ESS peak of Figure 7.6	210
7.8	Adaptive landscape for Bergmann's rule G-function. Because	
	only a positive body size is allowed $G(v, \mathbf{u}^*, \mathbf{x}^*, y^*)$ has a	
	unique maximum on the PSS have a positive fitne mumixam appinu	213
7.9	Using $\sigma_b^2 = 10$ results in an ESS coalition with one prey and	
	one predator. There is an illusion that the landscape for the prey	
	dips. It is actually a true maximum as is the predator	216
7.10	Using $\sigma_b^2 = 4$ results in an ESS coalition with one prey and	
	two predators	217
7.11	Using $\sigma_b^2 = 1$ results in an ESS coalition with two prey and	
	two predators	217
7.12	Using $\sigma_b^2 = 0.75$ results in an ESS coalition with three prey	
	and two predators	218
7.13	An ESS coalition of two strategies as indicated by the circle	
	and asterisk	221

List of figures

7.14	A case where Darwinian dynamics does not result in an ESS	
	solution	221
7.15	A multistage ESS coalition of one strategy	225
7.16	The ecological cycle in this case is a 4-cycle	228
7.17	The adaptive landscape at each of the four points of an	
	ecological cycle. The time step and the value of the G-function	
	at each peak are noted at the top of each graph	228
7.18	A plot of the adaptive landscape at each point of the 4-cycle	229
8.1	Adaptive dynamics can result in a stable minimum that is not	
	an ESS algioning	238
8.2	Using a narrow distribution of strategies about the archetype	
	results in the clumping of strategies at the ends of the	
	distribution and headed and a sector and to not the 223 mA	238
8.3	A wider distribution of strategies results in a clumping in	
	the vicinity of the archetype as well as at the left end of	33
	the distribution	239
8.4	The two species are at evolutionarily stable maxima but they	
	do not compose an ESS	240
8.5	In this case the strategies clump about a two species archetype	
	denoted by the diamonds	241
8.6	The three-species ESS	241
8.7	By choosing a proper interval for the distribution of strategies,	
	clumping is obtained around a three species archetype that	
	together form an ESS	242
8.8	As the mean strategy approaches the ESS, the variance	
	narrows	244
8.9	Shortly after the simulation starts, only those strategies in the	
	neighborhood of the ESS have a positive fitness	245
8.10	The mean strategy changes with time in a fashion similar to	
	that obtained using strategy dynamics with $\sigma^2 = 0.001$	246
8.11	A clump of strategies evolves to the ESS	248
8.12	As time goes on, the clump of strategies straddles the ESS as	
	given by $u_1 = 0.6065$	248
8.13	After reaching the species archetype, the clump of strategies	
	becomes a bimodal distribution	250
8.14	How the clump of strategies approaches the species archetype	250
8.15	With $m = 0.1$ the ESS is a coalition of one strategy of the base	255
8.16	With $m = 0.005$ a single strategy evolves to a local minimum	
	on the adaptive landscape	255
8.17	With $m = 0.005$ the ESS is a coalition of two strategies	256

xii

T	C	C	
1151	nt	πo	urps
LIDI	J.	108	00100

8.18	Decreasing σ_k^2 can also result in an ESS coalition of two	
	strategies built bus because $s(T_{1}(0) = T_{1})$ travial on this labour	257
8.19	The four species resulting from the two environmental	
	conditions (E_1 to the left and E_2 to the right). Each figure shows	
	the two co-existing species that have evolved to evolutionarily	
	stable maxima	259
8.20	An adaptive radiation towards a five-species ESS. Sympatric	
	speciation carries the system from a single species up to	
	four species that converge on non-ESS evolutionarily	
	stable maxima	262
8.21	An ESS coalition of five strategies for the Lotka–Volterra	
	competition model	263
8.22	The adaptive radiation of the predator-prey model from a single	
	prey and a single predator species to a non-ESS community of	
	two prey and two predator species	267
9.1	The strategy \mathbf{u}_1 is a matrix-ESS	289
9.2	The adaptive landscape is linear for the bi-linear game	289
9.3	A coalition of two pure strategies exists for the game	
	of chicken	291
9.4	The function $G(\mathbf{v}, \mathbf{u}, \mathbf{p}^*)$ takes on a proper maximum	
	at $v = 0.5469$	297
9.5	The matrix-ESS solution produces the maximum number	
	of children	301
10.1	The solid line represents the fitness in habitat 1 and the curved	
	dashed line the fitness in habitat 2. When the density reaches	
	a level such that the two fitnesses are equal (designated by the	
	square), any further increase in density is divided between the	
	two habitats	307
10.2	The solution obtained in the previous example is found to be	
	convergent stable	314
10.3	The solution obtained satisfies the ESS maximum principle	314
10.4	Strategy dynamics results in an ESS coalition of two strategies	316
10.5	The solution obtained satisfies the ESS maximum principle	317
10.6	When $R < m K_m$ equilibrium C is evolutionarily stable (left	
	panel). When $R > mK_m$ equilibrium B is evolutionarily	ones
	unstable (right panel)	320
10.7	After two years the cancer cells have evolved to a maximum	
	on the adaptive landscape	323
10.8	After evolutionary constraints have been removed, cancer	
	develops rapidly in the first year	324

List of figures

11.1	The first panel is the adaptive landscape for the Schaeffer	
	model with no harvest $(E = 0)$. The second and third panels	
	illustrate how the adaptive landscape changes with	257
11.2	Before treatment, the concer cells are at a local maximum	551
11.2	before treatment, the cancer cells are at a local maximum	
113	During treatment the cancer cells evolve to a new more	501
11.5	deadly strategy	362
114	After treatment, the cancer cells are again at a local maximum	502
cac	on the adaptive landscape	362
	Usin one-water from the official contraction of the material in the REPORT	
	By christian manipulation son blog addition 828 states and	
	A shipin state wallow 2007 att the 2012 has backet a solution of T	

xiv