

ABOUT THIS BOOK

The sole subject of this work is Kepler's Equation: $M=E-e \sin E$. In virtually every decade from 1650 to the present there have appeared papers devoted to the Kepler problem and its solution. We can see from a list of them that the problem has enticed a wide variety of scientists to comment on or involve themselves in its solution.

It is surely not unique in science for a specific problem to be given so much attention over so long a period—particularly if it resists solution, if its partial solutions are inadequate or unsatisfactory, or if it is recharged with new interpretations and new applications. Still, it is curious that the Kepler problem should have continued to be this interesting to so many for so long. Admittedly it is a problem central to celestial mechanics, but it is a technical little problem for which a number of satisfactory solutions are long known. With the advent of calculators and computers, there is no impediment to achieving quick solutions of great accuracy. The problem has neither the broad appeal of an Olbers Paradox, nor the depth and intractability of a many-body problem.

In common with almost any scientific problem which achieves a certain longevity and whose literature exceeds a certain critical mass, the Kepler problem has acquired an undeniable luster and allure for the modern practitioner. Any new technique for the treatment of transcendental equations should be applied to this illustrious test case; any new insight, however slight, lets its conceiver join an eminent list of contributors.

The Kepler problem has been "on the scene" in Western civilization science for over three centuries. To gather its story is to view this science through a narrow-band filter, and our goal is to make the picture at one wavelength instructive and interesting.

ABOUT THE AUTHOR

Peter Colwell earned degrees in mathematics at The College of Wooster, Ohio University and University of Minnesota. Since 1965 he has taught and studied complex function theory at Iowa State University where he is Professor of Mathematics.

Published by

Willmann-Bel

P.O. Box 35025
Richmond, Virginia 23235
United States of America

X002955L7H

Solving Kepler's Equation over Three Centuries
New

Preface	iii
Introduction	ix
1 Origins, Antecedents, and Early Developments	1
The Anomalies and Kepler's Equation	1
Kepler's Solution	4
Parallax and Arab Encounters with KE	4
2 Nonanalytic Solutions	7
Solutions Not Ascribing to Kepler's Second Law	7
The Cassini Solution	12
The Horrocks Solution	16
The Horrebow Solution	18
Solution by Cycloid	20
Solution by "Curve of Sines"	21
3 Infinite Series Solutions	23
Solution by Lagrange's Theorem	23
KE and Bessel Functions	27
Levi-Civita's Solution of KE	38
A Lie-Series Solution of KE	41
4 Solutions of KE by Iteration	45
Kepler's Solution Revisited	46
Newton's Method and KE	48
Ivory's Geometric Iteration	54
5 Solutions of KE for High Eccentricity	57
Barker's Equation and Parabolic Approximations	57
Gauss' Method	61

6 Cauchy and KE	67
Cauchy's Treatment of Lagrange's Theorem and KE	69
Following Cauchy from 1849 to 1941	74
7 Calculations, Auxiliary Tables, and Analogue Devices	79
Tables and Approximation Formulas	80
Analogue Devices	86
8 Modern Treatments of KE	93
The Period 1930–1950	93
“Universal” Forms for KE	98
Numerical Experiments with KE	98
KE and Methods for Transcendental Equations	108
The Burniston-Siewert Method	109
The Ioakimidis-Papadakis Method	111
The Delves-Lyness Method	112
Newton's Method for Power Series	113
A Geometric Parallax and KE	119
B Error in the Horrocks Solution	121
C Machin's E_1	125
D Coefficients for the Lagrange Solution	127
E Coefficients of the Levi-Civita Solution	129
F Autonomous Differential Equations and Lie-Series	135
G Coefficients of the Lie-Series Solution	137
H Binary Systems and KE	139
I Hyperbolas and Battin's Universal KE	141
J Boltz's Parameters	147
K Riemann Boundary Value Problems and the Burniston-Siewert Method	149
Riemann Boundary Value Problem	149
The Burniston-Siewert Method and KE	151
L Newton's Method for Formal Power Series	155

M References Sorted by Categories

159

Bibliography

169

Index

199