ABOUT THIS BOOK

The sole subject of this work is Kepler's Equation: M=E-e sinE. In
virtually every decade from 1650 to the present there have
appeared papers devoted to the Kepler problem and its solution.
We can see from a list of them that the problem has enticed a
wide variety of scientists to comment on or involve themselves in
its solution.

It is surely not unique in science for a specific problem to be given
so much attention over so long a period—particularly if it resists
solution, if its partial solutions are inadequate or unsatisfactory, or
if it is recharged with new interpretations and new applications.
Still, it is curious that the Kepler problem should have continued to
be this interesting to so many for so long. Admittedly itisa
problem central to celestial mechanics, but it isa technical little
problem for which a number of satisfactory solutions are long
known. With the advent of calculators and computers, there isno
Impediment to achieving quick solutions of great accuracy, The
problem has neither the broad appeal of an Olbers Paradox, nor
the depth and intractability of a many-body problem.

In common with almost any scientific problem which achieves a
certain longevity and whose literature exceeds a certain critical
mass, the Kepler problem has acquired an undeniable luster and
allure for the modern practitioner. Any new technique for the
treatment of transcendental equations should be applied to this
illustrious test case; any new insight, however slight, lets its
conceiver join an eminent list of contributors.

The Kepler problem has been "on the scene" in Western
civilization science for over three centuries. To gather its story isto
view this science through a narrow-band filter, and our goal isto
make the picture at one wavelength instructive and interesting.
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