Partial Differential Equations

Third Edition

This book offers an ideal graduate-level introduction to the theory of partial differential equations. The first part of the book describes the basic mathematical problems and structures associated with elliptic, parabolic, and hyperbolic partial differential equations, and explores the connections between these fundamental types. Aspects of Brownian motion or pattern formation processes are also presented. The second part focuses on existence schemes and develops estimates for solutions of elliptic equations, such as Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. In particular, the reader will learn the basic techniques underlying current research in elliptic partial differential equations.

This revised and expanded third edition is enhanced with many additional examples that will help motivate the reader. New features include a reorganized and extended chapter on hyperbolic equations, as well as a new chapter on the relations between different types of partial differential equations, including first-order hyperbolic systems, Langevin and Fokker-Planck equations, viscosity solutions for elliptic PDEs, and much more. Also, the new edition contains additional material on systems of elliptic partial differential equations, and it explains in more detail how the Harnack inequality can be used for the regularity of solutions.

Mathematics

▶ springer.com

1	Intro	oduction: What Are Partial Differential Equations?	1		
2	The Laplace Equation as the Prototype of an Elliptic Partial Differential Equation of Second Order				
	2.2	for the Solution of the Dirichlet Problem on the Ball (Existence Techniques 0)	9		
		Subharmonic Functions. The Maximum Principle	19		
3	The Maximum Principle				
	3.1	The Maximum Principle of E. Hopf	37		
	3.2	The Maximum Principle of Alexandrov and Bakelman	43		
	3.3	Maximum Principles for Nonlinear Differential Equations	49		
4	Existence Techniques I: Methods Based on the Maximum				
	Prin	ciple	59		
	4.1	Difference Methods: Discretization of Differential Equations	59		
	4.2	The Perron Method	68		
	4.3	The Alternating Method of H.A. Schwarz	72		
	4.4	Boundary Regularity	76		
5	Existence Techniques II: Parabolic Methods. The Heat Equation		85		
	5.1	The Heat Equation: Definition and Maximum Principles	85		
	5.2	The Fundamental Solution of the Heat Equation.			
		The Heat Equation and the Laplace Equation	97		
	5.3	The Initial Boundary Value Problem for the Heat Equation	105		
	5.4	Discrete Methods	122		
6	Reaction-Diffusion Equations and Systems				
	6.1	Reaction–Diffusion Equations	127		
	6.2	Reaction-Diffusion Systems	135		
	6.3	The Turing Mechanism	139		

7	Hyper	rbolic Equations	149	
	7.1	The One-Dimensional Wave Equation and the Transport		
	7.0	Equation	149	
	7.2 7.3	First-Order Hyperbolic Equations	152 160	
	7.4	The Wave Equation	100	
		Through the Darboux Equation	165	
8	The H	Ieat Equation, Semigroups, and Brownian Motion	173	
U	8.1	Semigroups	173	
	8.2	Infinitesimal Generators of Semigroups	175	
	8.3	Brownian Motion	194	
9	Relati	ionships Between Different Partial Differential Equations	207	
	9.1	The Continuity Equation for a Dynamical System	207	
	9.2	Regularization by Elliptic Equations	209	
10	The D	Dirichlet Principle. Variational Methods for the Solution		
		Es (Existence Techniques III)	215	
	10.1	Dirichlet's Principle	215	
	10.2	The Sobolev Space $W^{1,2}$	218 230	
	10.3	Quadratic Variational Problems	233	
	10.5	Abstract Hilbert Space Formulation of the Variational		
		Problem. The Finite Element Method	235	
	10.6	Convex Variational Problems	243	
11	Sobol	ev Spaces and L ² Regularity Theory	255	
	11.1	General Sobolev Spaces. Embedding Theorems		
	11.0	of Sobolev, Morrey, and John–Nirenberg	255	
	11.2	L ² -Regularity Theory: Interior Regularity of Weak Solutions of the Poisson Equation	271	
	11.3	Boundary Regularity and Regularity Results	2/1	
		for Solutions of General Linear Elliptic Equations	280	
	11.4	Extensions of Sobolev Functions and Natural		
		Boundary Conditions	289	
	11.5	Eigenvalues of Elliptic Operators	295	
12	Stron	The Regularity Theory for Strong Solutions	311	
			311	
	12.2	A Survey of the L^p -Regularity Theory and Applications to Solutions of Semilinear Elliptic Equations	316	
	12.3	Some Remarks About Semilinear Elliptic Systems;	310	
	12.5	Transformation Rules for Equations and Systems	321	
13	The I	Regularity Theory of Schauder and the Continuity		
13	Method (Existence Techniques IV)			
	13.1		329	

	13.2	The Schauder Estimates	340		
	13.3	Existence Techniques IV: The Continuity Method	346		
14	The	Moser Iteration Method and the Regularity Theorem			
		Giorgi and Nash	353		
	14.1	The Moser–Harnack Inequality	353		
	14.2	Properties of Solutions of Elliptic Equations	366		
	14.3	An Example: Regularity of Bounded Solutions			
		of Semilinear Elliptic Equations	371		
	14.4	Regularity of Minimizers of Variational Problems	376		
App	Appendix. Banach and Hilbert Spaces. The L^p -Spaces				
Ref	References				
Index of Notation					
Inde	ex		407		