Aimed at graduate students and researchers, this book covers the key aspects of the modern quantum theory of solids, including up-to-date ideas such as quantum fluctuations and strong electron correlations. It presents the main concepts of the modern quantum theory of solids, as well as a general description of the essential theoretical methods required when working with these systems.

+

Using unifying concepts of order and elementary excitations, the book treats diverse topics such as the general theory of phase transitions; harmonic and anharmonic lattices; Bose condensation and superfluidity; modern aspects of magnetism including resonating valence bonds; electrons in metals and strong electron correlations. The main theoretical tools used to treat these problems are introduced and explained in a simple way, and their applications are demonstrated through concrete examples.

Daniel Khomskii is a Professor in the II Physikalisches Institut, Cologne University. His main research interests are the theory of systems with strongly correlated electrons, metal–insulator transitions, magnetism, orbital ordering (Kugel–Khomskii model) and superconductivity.

> CAMBRIDGE UNIVERSITY PRESS www.cambridge.org

	Foreword and general introduction page							
1	Som	ome basic notions of classical and quantum statistical physics						
	1.1	Gibbs distribution function and partition function	1					
	1.2	Thermodynamic functions	2					
	1.3	Systems with variable number of particles; grand partition						
		function	4					
2	Gen	neral theory of phase transitions						
	2.1	Second-order phase transitions (Landau theory)	6					
	2.2	(Weak) First-order phase transitions	11					
		2.2.1 Another possibility of getting a first-order phase						
		transition	13					
	2.3	Interaction with other degrees of freedom	14					
	2.4	Inhomogeneous situations (Ginzburg-Landau theory)						
	2.5	Fluctuations at the second-order phase transitions	19					
		2.5.1 Critical indices and scaling relations	21					
	2.6	Quantum phase transitions	23					
	2.7	General considerations						
		2.7.1 Different types of order parameters	25					
		2.7.2 General principle	25					
		2.7.3 Broken symmetry and driving force of phase transitions	26					
		2.7.4 The Goldstone theorem	27					
		2.7.5 Critical points	28					
3	Bose	e and Fermi statistics	31					
4	Pho	nons in crystals	34					
	4.1	Harmonic oscillator						
	4.2	Second quantization						
	4.3	Physical properties of crystals in the harmonic approximation						

	4.4	Anharmonic effects				
		4.4.1 Thermal expansion	43			
		4.4.2 Melting	45			
		4.4.3 Another approach to melting. Quantum melting	48			
		4.4.4 Low-dimensional solids; why is our world				
		three-dimensional?	51			
5	Gen	eral Bose systems; Bose condensation	54			
	5.1	Bose condensation	54			
	5.2	Weakly interacting Bose gas	58			
	5.3	Bose condensation and superfluidity				
		5.3.1 Landau criterion of superfluidity	65			
		5.3.2 Vortices in a superfluid	67			
6	Mag	gnetism	70			
	6.1	Basic notions; different types of magnetic response	70			
		6.1.1 Susceptibility of noninteracting spins	74			
	6.2	Interacting localized moments; magnetic ordering	76			
		6.2.1 Mean field approximation	77			
		6.2.2 Landau theory for ferromagnets	80			
		6.2.3 Antiferromagnetic interactions	84			
		6.2.4 General case	87			
	6.3	Quantum effects: magnons, or spin waves	91			
		6.3.1 Magnons in ferromagnets	92			
		6.3.2 Antiferromagnetic magnons. Zero-point oscillations				
		and their role	98			
	6.4	Some magnetic models	104			
		6.4.1 One-dimensional models	105			
		6.4.2 Resonating valence bonds, spinons and holons	109			
		6.4.3 Two-dimensional models	117			
	6.5	Defects and localized states in magnetic and other systems	123			
7	Elec	ctrons in metals	127			
	7.1	General properties of Fermi systems	127			
		7.1.1 Specific heat and susceptibility of free electrons				
		in metals	129			
8	Inte	eracting electrons. Green functions and Feynman diagrams				
	(me	thods of field theory in many-particle physics)	133			
	8.1	Introduction to field-theoretical methods in condensed				
		matter physics)	133			
	8.2	Representations in quantum mechanics	136			
	8.3	Green functions	139			
	8.4	Green functions of free (noninteracting) electrons	141			

		Contents	V11				
	8.5	Spectral representation of Green functions	143				
		8.5.1 Physical meaning of the poles of $G(p, \omega)$	144				
		8.5.2 Physical meaning of the spectral function $A(\mathbf{p}, \omega)$	146				
	8.6	Phonon Green functions	147				
	8.7	Diagram techniques	149				
		8.7.1 Dyson equations, self-energy and polarization					
		operators	153				
		8.7.2 Effective mass of the electron excitation	156				
9	Elec	trons with Coulomb interaction	159				
	9.1	Dielectric function, screening: random phase approximation					
	9.2	Nesting and giant Kohn anomalies	166				
	9.3	Frequency-dependent dielectric function; dynamic effects	169				
0	Fern	ni-liquid theory and its possible generalizations	175				
	10.1	The foundations of the Fermi-liquid theory	175				
	10.2	Non-Fermi-liquid states	183				
		10.2.1 Marginal Fermi liquid	183				
		10.2.2 Non-Fermi-liquid close to a quantum critical point	184				
		10.2.3 Microscopic mechanisms of non-Fermi-liquid					
		behaviour; Luttinger liquid	186				
1	Insta	abilities and phase transitions in electronic systems	188				
	11.1	Peierls structural transition	188				
		11.1.1 Qualitative considerations	188				
		11.1.2 Peierls instability in the general case	190				
		11.1.3 Different theoretical ways to treat Peierls distortion	192				
		11.1.4 Peierls distortion and some of its physical					
		consequences in real systems	198				
	11.2	Spin-Peierls transition	202				
	11.3	Charge-density waves and structural transitions,					
		higher-dimensional systems	206				
	11.4	Excitonic insulators	207				
	11.5	Intermezzo: BCS theory of superconductivity	212				
	11.6	Spin-density waves	216				
	11.7	Different types of CDW and SDW	220				
	11.8	Weakly and strongly interacting fermions. Wigner					
		crystallization	222				
2	Stro	ngly correlated electrons	229				
	12.1	Hubbard model	230				
	12.2	Mott insulators	230				
	12.3	Magnetic ordering in Mott insulators	234				

	12.4 C	2.4 One-particle spectrum of strongly correlated systems 23:					
		12.4.1	Aproximate treatment (Hubbard I decoupling)		236		
		12.4.2	Dealing with Hubbard bands. Spectral weight				
			transfer		238		
		12.4.3	Motion of electrons and holes in an				
			antiferromagnetic background		239		
	12.5	Ferroma		244			
35	12.6	Phase di	agram of the Hubbard model		244		
	12.7	Phase se	paration		247		
	12.8	$t-J \mod$	lel		251		
	12.9	Orbital o	ordering in the degenerate Hubbard model		252		
	12.10	Charge-t	ransfer insulators		258		
	12.11	Insulator	r-metal transition		265		
3	Magne	etic imput	rities in metals, Kondo effect, heavy fermions	1.01			
	and m	ixed vale	nce		272		
	13.1	Localize	d magnetic moments in metals		272		
	13.2	Kondo e	ffect		276		
	13.3	Heavy fe	ermion and mixed-valence systems		282		
	13.4	Kondo in	nsulators	1	288		
	13.5	Ferroma	gnetic Kondo lattice and double exchange	inst:			
		mechani	sm of ferromagnetism		290		
	Bibliography				296		
	Index		11.1.2 Coiesta instability inthe general care-		298		