Differential Forms

There already exist a number of excellent graduate textbooks on the theory of differential forms as well as a handful of very good undergraduate textbooks on multivariable calculus in which this subject is briefly touched upon but not elaborated on enough.

The goal of this textbook is to be readable and usable for undergraduates. It is entirely devoted to the subject of differential forms and explores a lot of its important ramifications.

In particular, our book provides a detailed and lucid account of a fundamental result in the theory of differential forms which is, as a rule, not touched upon in undergraduate texts: the isomorphism between the Čech cohomology groups of a differential manifold and its de Rham cohomology groups.

- Authoritative textbook on differential forms for undergraduates
- Includes numerous Examples and Exercises for further in-depth understanding on the presented concepts
- The first author, Victor Guillemin, is a world-renowned mathematician in the field of symplectic geometry
- His co-author, Peter Haine, is a talented doctoral student at MIT under Clark Barwick. His research interests center around homotopy theory, algebraic K-theory and algebraic geometry

Preface	v
Introduction	v
Organization	vii
Notational Conventions	xi
Acknowledgments	xii
Acknowledgments	Partie C
About the Authors	xiii
Chapter 1. Multilinear Algebra	1
1.1. Background	1
1.2. Quotient and dual spaces	4
1.3. Tensors	9
1.4. Alternating k-tensors	13
1.5. The space $\Lambda^k(V^*)$	19
1.6. The wedge product	23
1.7. The interior product	26
1.8. The pullback operation on $\Lambda^k(V^*)$	29
1.9. Orientations	33
Chapter 2. The Concept of a Differential Form	37
2.1. Vector fields and 1-forms	37
2.2. Integral curves for vector fields	42
2.3. Differential k-forms	50
2.4. Exterior differentiation	53
2.5. The interior product operation	58
2.6. The pullback operation on forms	61
2.7. Divergence, curl, and gradient	68
2.8. Symplectic geometry and classical mechanics	72
Chapter 3. Integration of Forms	81
3.1. Introduction	81
3.2. The Poincaré lemma for compactly supported forms	
on rectangles	81
3.3. The Poincaré lemma for compactly supported forms on open	
subsets of \mathbb{R}^n	86

3.4. The degree of a differentiable mapping	88
3.5. The change of variables formula	92
3.6. Techniques for computing the degree of a mapping	98
3.7. Appendix: Sard's theorem	106
Chapter 4 Manifolds and Forms on Manifolds	
Chapter 4. Manifolds and Forms on Manifolds 4.1. Manifolds	111
	111
4.2. Tangent spaces	119
4.3. Vector fields and differential forms on manifolds	125
4.4. Orientations	133
4.5. Integration of forms on manifolds	142
4.6. Stokes' theorem and the divergence theorem	147
4.7. Degree theory on manifolds	153
4.8. Applications of degree theory	158
4.9. The index of a vector field	165
Chapter 5. Cohomology via Forms	171
5.1. The de Rham cohomology groups of a manifold	171
5.2. The Mayer-Vietoris sequence	182
5.3. Cohomology of good covers	190
5.4. Poincaré duality	197
5.5. Thom classes and intersection theory	203
5.6. The Lefschetz theorem	212
5.7. The Künneth theorem	221
5.8. Čech cohomology	225
Appendix A. Bump Functions and Partitions of Unity	
Appendix в. The Implicit Function Theorem	
Appendix B. The Implicit Function Theorem	237
Appendix c. Good Covers and Convexity Theorems	245
Bibliography	249
Index of Notation	
Glossary of Terminology	
Glossary of Terminology	253