About the Advanced Book Classics:

Read and cited by scientists and mathematicians worldwide, Advanced Book Classics are works that continue to inform today's groundbreaking research efforts. Redesigned and newly released in paperback, these graduate-level texts and monographs are now available to an even wider audience. Written by the most influential physicists of the twentieth century, these Advanced Book Classics promise to enrich and inspire a new generation of physicists.

This volume explains the fundamental concepts and theoretical techniques used to understand the properties of quantum systems having large numbers of degrees of freedom. A number of complementary approaches are developed, including perturbation theory; nonperturbative approximations based on functional integrals; general arguments based on order parameters, symmetry, and Fermi liquid theory; and stochastic methods. Each approach provides its own insights and quantitative capabilities, and in conjunction provide a powerful framework for understanding a wide variety of physical systems. Written at a level for graduate students with no prior background in many-body theory, this classic text is intended for physicists in solid state physics, field theory, atomic physics, condensed matter physics, quantum chemistry, and nuclear physics.

"Excellent...well suited for a graduate course in manybody theory...characterized by mathematical elegance."

Physics Today

John Negele is Professor of Physics at M.I.T., where he has been a faculty member since 1970. He has been a recipient of numerous fellowships, including Guggenheim, Japan Society for the Promotion of Science, Alfred P. Sloan, NATO, National Science Foundation, Danforth, and Woodrow Wilson. His research interests range from the structure and dynamics of nuclei and the properties of dense matter to spin systems and quantum chromodynamics.

Henri Orland, a Physicist at the Service de Physique Théorique, CEA Saclay, has worked extensively in nuclear physics and statistical physics and is currently focusing his research in statistical physics on disordered media: spinglasses, optimization problems, neural networks, wetting phenomena, two-dimensional systems, interfaces in random systems, quasi-periodic systems, and related topics.

Cover design by Suzanne Heiser

Advanced Book Program

www.crcpress.com

Chapter	1	Second Quantization and Coherent States
	1.1	Quantum Mechanics of a Single Particle
	1.2	Systems of Identical Particles
	1.3	Many-Body Operators
	1.4	Creation and Annihilation Operators
	1.5	Coherent States
		Boson Coherent States
		Grassmann Algebra
		Fermion Coherent States
		Gaussian Integrals
		Problems for Chapter 1
Chapter	2	General Formalism at Finite Temperature
	2.1	Introduction
		Quantum Statistical Mechanics
		Physical Response Functions and Green's Functions 49
		Approximation Strategies
	2.2	Functional Integral Formulation
		Feynman Path Integral
		Imaginary-Time Path Integral and the Partition Function 63
		Coherent State Functional Integral
		The Partition Function for Many-Particle Systems 68
	2.3	Perturbation Theory
		Wick's Theorem
		Labeled Feynman Diagrams
		Unlabeled Feynman Diagrams
		Hugenholtz Diagrams
		Frequency and Momentum Representation
		The Linked Cluster Theorem
		Calculation of Observables and Green's functions 97
	2.4	Irreducible Diagrams and Integral Equations
		Generating Function for Connected Green's Functions 105
		The Effective Potential
		The Self-Energy and Dyson's Equation
		Higher-Order Vertex Functions
	2.5	Stationary-Phase Approximation and Loop Expansion 120
		One-Dimensional Integral
		Feynman Path Integral
		Many-Particle Partition Function
		Problems for Chapter 2

Chapter	3	Perturbation Theory at Zero Temperature
	3.1	Feynman Diagrams
		Zero-Temperature Fermion Propagators
		Fermion Diagram Rules
		Bosons
	3.2	Time-Ordered Diagrams
	3.3	The Zero-Temperature Limit
		Problems for Chapter 3
Chapter	4	Order Parameters and Broken Symmetry
	4.1	Introduction
		Phases of Two Familiar Systems
		Phenomenological Landau Theory
		Broken Symmetry
	4.2	
		Infinite Range Ising Model
		Generalizations
		Physical Examples
	4.3	Mean Field Theory
		Legendre Transform
		Ferromagnetic Transition for Classical Spins
		Application to General Systems
	4.4	Fluctuations
		Landau Ginzburg Theory and Dimensional Analysis 207
		One-Loop Corrections
		Continuous Symmetry
		One-Loop Corrections for the $x-y$ model
		Lower Critical Dimension
		The Anderson-Higgs Mechanism
		Problems for Chapter 4
Chapter	5	Green's Functions
	5.1	Introduction
		Definitions
		Evaluation of Observables
	5.2	Analytic Properties
		Zero Temperature Green's Functions
		Finite Temperature Green's Functions
	5.3	
		Quasiparticle Pole
		Effective Masses
1		Optical Potential
tel .	5.4	Linear Response
		The Response Function
		Random Phase Approximation

	5.5	Zero Sound271Matrix Form of RPA276Sum Rules and Examples277Magnetic Susceptibility of a Fermi Gas281Static Susceptibility at Zero Temperature281Static Susceptibility at Finite Temperature282Dynamic Susceptibility at Zero Temperature284Dynamic Susceptibility at Finite Temperature284Problems for Chapter 5285
Chapter	6	The Landau Theory of Fermi Liquids
	6.1 6.2 6.3	Quasiparticles and their Interactions
Chapter	7	Further Development of Functional Integrals
Chapter	7.1	Representations of the Evolution Operator
	7.2	사용하다 보고 있다면 있다. 이번 100mm 1
	7.3	
	7.4	Collective Excitations and Tunneling
	7.5	Large Orders of Perturbation Theory
Chapter	8	Stochastic Methods
	8.1	Monte Carlo Evaluation of Integrals
	8.2	Sampling Techniques

	Markov Processes						408
	Neumann-Ulam Matrix Inversion .						
	Microcanonical Methods						
8.3	Evaluation of One-Particle Path Integral						
	Observables						
	Sampling the Action						
	Initial Value Random Walk						
	Tunneling						
8.4	Many Particle Systems						
	Path Integral in Coordinate Represent						
	Functional Integrals Over Fields						
8.5	Spin Systems and Lattice Fermions .						
	Checkerboard Decomposition						
	Special Methods for Spins						
	Problems for Chapter 8						
	Peferences						447
	References						
	Index						400