Crystallography is an interdisciplinary science covering a wide area, from biology to earth sciences, mathematics, and materials science. Its role is growing, owing to the contribution crystallography can offer to the understanding of such diverse fields as biological structures, high-temperature superconductors, mineral properties, and phase transitions. This book describes both the theoretical bases and applications of different areas interacting with crystallography. As with the first and second editions, it is organized as a collection of chapters written by recognized specialists, with all contributions being harmonized into a unified whole. The main text is devoted to the presentation of basics; appendices to the chapters deal with specialist aspects. In this third edition topics have been updated so as to document the present state-of-the-art: emphasis is placed upon areas of current research.

- Updated throughout to reflect the current state-of-the-art, and for clearer pedagogy.
- 95 new figures introduced, to aid understanding.
- Reference lists updated to reflect recent advances in the field.
- Many sections completely rewritten, including those on powder crystallography, electron diffraction, phase determination procedures using dual space approaches, and H-bonding.
- New material introduced, including sections on charge-transfer or donor-acceptor interactions, electron density modification methods, and humidity control of macromolecular crystals.

The complimentary CD of the second edition is now available via the web: http://wwwba.ic.cnr.it/abc. Modern graphics will help users to understand the basics of this science via three-dimensional images, simulation of experiments, and exercises.

From reviews of previous editions:

'A new research worker could turn to the appropriate chapter and find a description of how to tackle real problems ... this book is an excellent crystallography text, both for those involved with the subject in a practical sense or those that require fundamental information on the subject ... it has that rare quality that the more it is read, the better it seems. It deserves a place on the shelf of all those involved in, or interested in, crystallography.'

Materials World

'This is a remarkable text. It is a tribute at once to the wide reach of crystallography over many branches of science and to the contemporary vigor and vitality of Italian crystallography and crystallographers.'

Acta Crystallographical

Acta Crystallography

**Act

"... there is a good balance achieved between well-illustrated description and mathematical rigour. Established crystallographers will find it a handy reference manual, while at the same time the text remains accessible and informative reading for undergraduates with an interest in crystallography."

The Times Higher Education Supplement

Cover image: Cartoon representation of the folding of NAPA from Helicobaeter pylori, a bacterium that lives in the human stomach. 12 identical monomers, arranged in a nearly spherical shell with 23 symmetry, form an internal cavity where iron can be stored. The space filling model of the protein is shown in the background. Small red spheres represent coordinated Fe ions (Protein Data Bank code 1][4].

OXFORD UNIVERSITY PRESS

1 Symmetry in crystals

Carmelo Giacovazzo

- 1.1 The crystalline state and isometric operations
- 1.2 Symmetry elements
 - 1.2.1 Axes of rotational symmetry
 - 1.2.2 Axes of rototranslation or screw axes
 - 1.2.3 Axes of inversion
 - 1.2.4 Axes of rotoreflection
 - 1.2.5 Reflection planes with translational component (glide planes)
- 1.3 Lattices
- 1.4 The rational properties of lattices
 - 1.4.1 Crystallographic directions
 - 1.4.2 Crystallographic planes
- 1.5 Symmetry restrictions due to the lattice periodicity and vice versa
- 1.6 Point groups and symmetry classes
 - 1.6.1 Point groups in one and two dimensions
- 1.7 The Laue classes
- 1.8 The seven crystal systems
- 1.9 The Bravais lattices
 - 1.9.1 Plane lattices
 - 1.9.2 Space lattices
- 1.10 The space groups
- 1.11 The plane and line groups
 - 1.12 On the matrix representation of symmetry operators

Appendices

- 1.A The isometric transformations
 - 1.A.1 Direct movements
 - 1.A.2 Opposite movements
- 1.B Some combinations of movements
- 1.C Wigner-Seitz cells
- 1.D The space-group matrices
- 1.E Symmetry groups
 - 1.E.1 Subgroups
 - 1.E.2 Cosets
 - 1.E.3 Conjugate classes

	1.E.4 Conjugate subgroups	53
	1.E.5 Normal subgroups and factor groups	53
	1.E.6 Maximal subgroups and minimal supergroups	55
	1.E.7 Maximal subgroups and minimal supergroups for	
	three-dimensional crystallographic point groups	57
	1.E.8 Limiting groups in two and three dimensions	57
	1.E.9 Representation of a group	58
	1.E.10 Character tables	59
1.F	Symmetry generalization	59
	1.F.1 The symmetry groups G_n^m	60
	1.F.2 The G ¹ groups	60
	1.F.3 The G^2 groups	60
	1.F.4 The G ³ groups	60
	1.F.5 The G_n^4 groups	62
	1.F.6 The groups of colour symmetry	62
Ref	erences	65
Cry	stallographic computing	66
	是被转移的原理 40 · 以为是为美国,其中的政治的一个公司,以为政治的政治,但对对对共和国的政治,以为	00
Car	melo Giacovazzo	
2.1	Introduction	66
2.2	The metric matrix	66
2.3	The reciprocal lattice	69
2.4	Basis transformations	71
2.5	Transformation from triclinic to orthonormal axes	73
2.6	Rotations in Cartesian systems	75
2.7	Some simple crystallographic calculations	80
	2.7.1 Torsion angles	80
	2.7.2 Best plane through a set of points	80
	2.7.3 Best line through a set of points	82
	2.7.4 Principal axes of a quadratic form	82
2.8	Metric considerations on the lattices	84
	2.8.1 Niggli reduced cell	84
	2.8.2 Sublattices and superlattices	87
20	2.8.3 Coincidence-site lattices	88
	Calculation of the electron density function	90
	Calculation of the structure factor The method of least agreement	92 94
2.11	The method of least squares 2.11.1 Linear least squares	95
	2.11.2 Linear least squares with constraints	97
	2.11.2 Emeai least squares with constraints 2.11.3 Non-linear (unconstrained) least squares	98
	2.11.4 Least-squares refinement of crystal structures	99
	2.11.5 Practical considerations on crystallographic least squares	104
	2.11.6 Constraints and restraints in crystallographic	104
	least squares	110
2.12	Alternatives to the method of least squares	114
2.12	2.12.1 Maximum likelihood refinement	115
	Manifesti incompositioni	113

- 2.12.2 Gradient methods
- 2.13 Powder crystallography: techniques for structural analysis
 - 2.13.1 Phasing via powder diffraction
 - 2.13.2 The basis of the Rietveld refinement
 - 2.13.3 Some practical aspects of Rietveld refinement
- 2.14 Analysis of thermal motion
- 2.15 The effect of thermal motion on bond lengths and angles
- 2.16 About the accuracy of the calculated parameters

Appendices

- 2.A Some metric relations between direct and reciprocal lattices
- 2.B Some geometrical calculations concerning directions and planes
- 2.C Some transformation matrices
- 2.D Reciprocity of F and I lattices
- 2.E Transformations of crystallographic quantities in rectilinear spaces
- 2.F Derivation of the normal equations
- 2.G Derivation of the variance-covariance matrix M_x
- 2.H Derivation of the unbiased estimate of M_x
- 2.I The FFT algorithm and its crystallographic applications

References

3 The diffraction of X-rays by crystals

Carmelo Giacovazzo

- 3.1 Introduction
- 3.2 Basic properties of X-rays
- 3.3 Thomson scattering
- 3.4 Compton scattering
- 3.5 Interference of scattered waves
- 3.6 Scattering by atomic electrons
- 3.7 Scattering by atoms
- 3.8 The temperature factor
 - 3.9 Scattering by a molecule or by a unit cell
 - 3.10 Diffraction by a crystal
 - 3.11 Bragg's law
 - 3.12 The reflection and the limiting spheres
 - 3.13 Symmetry in reciprocal space
 - 3.13.1 Friedel law
 - 3.13.2 Effects of symmetry operators in the reciprocal space
 - 3.13.3 Determination of the Laue class
 - 3.13.4 Determination of reflections with restricted phase values
 - 3.13.5 Systematic absences
 - 3.13.6 Unequivocal determination of the space group
 - 3.14 Diffraction intensities
 - 3.15 Anomalous dispersion
 - 3.16 The Fourier synthesis and the phase problem

Appendices

- 3.A Mathematical background
 - 3.A.1 Dirac delta function

		3.A.2	A mathematical model for the lattice	194
		3.A.3	Convolutions: the mathematical model of a crystal	195
		3.A.4	Some properties of convolutions	197
		3.A.5	The Fourier transform	198
		3.A.6	Some examples of Fourier transform	200
		3.A.7	Fourier transform of spherically symmetric functions	204
		3.A.8	Deconvolution of spectra	205
	3.B	Scatter	ring and related topics	206
		3.B.1	Compton scattering	206
		3.B.2	The anisotropic temperature factor	206
		3.B.3	Symmetry restrictions on the anisotropic	
			temperature factors	209
		3.B.4	The Renninger effect and experimental phase	
			determination by means of multiple	
			diffraction experiments	211
			Electron diffraction	216
		3.B.6	Neutron scattering	220
		3.B.7		
			and perspectives	224
			electron density mapping	228
	Refe	rences		232
4	Bev	ond i	deal crystals	235
	Cari	melo G	Giacovazzo	
	4.1	Introdu	ection	235
	4.2	Orderin	ng types	236
	4.3	Crystal	twins	237
	4.4		e scattering	244
			Thermal diffuse scattering	244
			Disorder diffuse scattering	248
	4.5		ated crystal structures	251
	4.6		crystals	254
			Introductory remarks	254
			A mathematical basis	255
			Aperiodic tiling and quasi-crystals	258
			Embedding quasi-crystals in higher-dimensional space	261
	4.7		crystals (or mesomorphic phases)	264
	4.8		racrystal	267
	4.9		hous and liquid states	270
		4.9.1	Diffraction from a finite statistically homogeneous object	271
		4.9.2	Diffraction from a finite statistically homogeneous	
		E (538)	object with equal atoms	272
		4.9.3	Diffraction from an isotropic statistically	
		ini aso	homogeneous object	275
			The Debye formula	276
			tion by gases	277
	4.11	Diffrac	tion by liquids and amorphous bodies	281

	~ /*		the state of the s
4 12	Smal	I-angle	scattering
1111	Dillett	1 411510	Denteroling

Appendices

- 4.A Examples of twin laws
 - 4.A.1 Cubic system
 - 4.A.2 Tetragonal system
 - 4.A.3 Hexagonal and trigonal systems
 - 4.A.4 Orthorhombic system
 - 4.A.5 Monoclinic system
 - 4.A.6 Triclinic system
- 4.B How to recognize and treat twins
- 4.C Embedding of modulated structures in higher-dimensional space
- 4.D About Fibonacci numbers and sequences

References

5 Experimental methods in X-ray and neutron crystallography

Hugo L. Monaco and Gilberto Artioli

- 5.1 Introduction
- 5.2 X-ray sources
 - 5.2.1 Conventional generators
 - 5.2.2 Synchrotron radiation
 - 5.2.3 X-ray optics: monochromatization, collimation, and focusing of X-rays
- 5.3 Neutron sources
 - 5.3.1 Nuclear reactors
 - 5.3.2 Pulsed neutron sources
 - 5.3.3 Neutron optics
- 5.4 X-ray and neutron detectors
 - 5.4.1 X-ray detectors
 - 5.4.2 Neutron detectors
- 5.5 Data-collection techniques for single crystals
 - 5.5.1 The Laue method
 - 5.5.2 The single-crystal cameras
 - 5.5.3 The single-crystal diffractometer
- 5.6 Data-collection techniques for polycrystalline materials
 - 5.6.1 Diffraction of polycrystalline materials
 - 5.6.2 Cameras used for polycrystalline materials
 - 5.6.3 Diffractometers used for polycrystalline materials
 - 5.6.4 Applications of powder diffraction
- 5.7 In situ measurements at non-ambient conditions
 - 5.7.1 High-temperature polycrystalline diffraction
 - 5.7.2 Low-temperature single-crystal diffractometry
 - 5.7.3 Humidity control of macromolecular crystals
 - 5.7.4 High-pressure experiments
- 5.8 Data reduction
 - 5.8.1 Lorentz correction

References

		5.8.2 Polarization correction
		5.8.3 Absorption correction
		5.8.4 Radiation-damage correction
		5.8.5 Relative scaling
	Ann	endices
		Determination of the number of molecules or formula units in the
	3.71	unit cell of a crystal
	5 B	The cylindrical-film camera geometry
	5.C	
	5.D	
		erences
	Itel	A CIRCLS
6	Sol	ution and refinement of crystal structures
		rco Milanesio and Davide Viterbo
	6.1	Introduction
	6.2	Statistical analysis of structure factor amplitudes
	6.3	Direct space methods
		6.3.1 The Patterson function and its use
		6.3.2 Electron density modification methods
	6.4	Reciprocal space methods (direct methods)
		6.4.1 Introduction
		6.4.2 Structure invariants
		6.4.3 Probability methods
		6.4.4 Direct methods procedures
	6.5	프로마스 (B) 100 HO (B) 10
	6.6	Completing and refining the structure
		6.6.1 Difference Fourier method
		6.6.2 Least-squares method
		6.6.3 Absolute structure and resonant scattering
	App	endices
	6.A	Structure factor probability distributions
	6.B	Patterson vector methods
	6.C	Difference electron density modification (DEDM)
	6.D	Phase-retrieval methods in optics and their use in
		crystallography
	6.E	Effects of phase errors on electron density maps
	6.F	Probability formulae for triplet invariants
	6.G	Early direct method procedures
		6.G.1 Fixing the origin and the enantiomorph
		6.G.2 Phase-determination procedures
	6.H	Pseudotranslational symmetry
	6.I	Procedures for completing a partial model
		6.I.1 Weights for Fourier syntheses
		6.I.2 Syntheses for completing a partial model

7 Inorganic and mineral crystals

Giovanni Ferraris

7 1	Introductio	12
7.1	Introductio	111

7.2 Bonding aspects

- 7.2.1 Chemical bond and solid-state properties
- 7.2.2 Melting
- 7.2.3 Cleavage
- 7.2.4 Structure and morphology
- 7.2.5 Morphology and optical properties
- 7.2.6 Representing crystal structures
- 7.2.7 The ionic radii
- 7.2.8 Packing of spheres
- 7.2.9 Coordination polyhedra
- 7.2.10 Interstitial sites in hcp and ccp
- 7.2.11 Ionic radii and coordination polyhedra
- 7.2.12 Electrostatic bond strength and Pauling's rules
- 7.2.13 Bond strength vs. bond length
- 7.2.14 The charge distribution (CD) method
- 7.2.15 Applications of CD and ECoN
- 7.2.16 Bond valence and hydrogen bond
- 7.2.17 Bond valence and hydrates
- 7.2.18 Bond strength of the O...O hydrogen bond
- 7.2.19 Polymorphism
- 7.2.20 Solid solutions
- 7.2.21 Solid solutions, order/disorder and crystal-chemical formula

7.3 Structure types

- 7.3.1 Closest- and close-packing structure types
- 7.3.2 Packing spheres only
- 7.3.3 Filling tetrahedral sites
- 7.3.4 Filling octahedral sites
- 7.3.5 Filling octahedral and tetrahedral sites
- 7.3.6 More cp structures

7.4 Structures with complex anions

- 7.4.1 Orthosilicates
- 7.4.2 Disilicates and ring silicates
- 7.4.3 Chain silicates (inosilicates)
- 7.4.4 Layered silicates (phyllosilicates)
- 7.4.5 Tectosilicates
- 7.4.6 More structures of technological interest

7.5 Modular structures

- 7.5.1 Polytypism
- 7.5.2 Modelling the structure of OD polytypes
- 7.5.3 Identification of long-period polytypes
- 7.5.4 Polysomatic series

7.5.5	Modelling structures of polysomes
7.5.6	Modulated structures

7.6 Real structures

7.6.1 Symmetry domains

7.6.2 Unmixing phenomena

References

8 Molecules and molecular crystals

Gastone Gilli and Paola Gilli

8.1	Chemistry	and X-ray	crystal	lography
-----	-----------	-----------	---------	----------

- 8.1.1 Crystal and molecular structure
- 8.1.2 The growth of structural information

8.2 The nature of molecular crystals

- 8.2.1 Intermolecular forces
- 8.2.2 Thermodynamics of molecular crystals
- 8.2.3 Free and lattice energy of a crystal from atom–atom potentials
- 8.2.4 Polymorphism
- 8.2.5 The prediction of crystal structures

8.3 Elements of classical stereochemistry

- 8.3.1 Structure: constitution, configuration, and conformation
- 8.3.2 Isomerism
- 8.3.3 Ring conformations

8.4 Molecular structure and chemical bond

- 8.4.1 Introduction
- 8.4.2 Quantum-mechanical methods
- 8.4.3 Qualitative bonding theories
- 8.4.4 The VSEPR theory
- 8.4.5 The VB theory
- 8.4.6 Molecular mechanics (MM)
- 8.4.7 Molecular mechanics, force fields, and molecular simulation (MS)

8.5 Molecular hermeneutics: the interpretation of molecular structures

- 8.5.1 Correlation methods in structural analysis
- 8.5.2 Some three-centre-four-electron linear systems
- 8.5.3 Nucleophilic addition to organometallic compounds
- 8.5.4 Nucleophilic addition to the carbonyl group
- 8.5.5 Conformational rearrangements by structure-correlation methods
- 8.5.6 Evidence for resonance-assisted H-bond (RAHB) by structure-correlation methods

References

9 Protein crystallography

Giuseppe Zanotti

9.1 Introduction

9.2	Biologic	eal macromolecules
	9.2.1	Globular proteins
	9.2.2	Protein folding: general rules
	9.2.3	Levels of organization of proteins: secondary
		structure
	9.2.4	Representation of the polypeptide chain conformation
	9.2.5	Higher levels of organization: tertiary and quaternary
		structure, domains and subunits
	9.2.6	The influence of the medium
	9.2.7	Groups other than amino acids
	9.2.8	Protein classification
	9.2.9	Nucleic acids
9.3	Protein	crystals
	9.3.1	Principles of protein crystallization
		Crystallization methods
	9.3.3	Testing the conditions: factorial approaches
	9.3.4	Membrane proteins
	9.3.5	The solvent content of protein crystals
		Cryotechniques
	9.3.7	Preparation of isomorphous heavy-atom derivatives
	9.3.8	How isomorphous are isomorphous derivatives?
9.4	The so	lution of the phase problem
		The isomorphous replacement method
	9.4.2	The determination of heavy-atom positions
	9.4.3	The single isomorphous replacement (SIR) method
	9.4.4	The classical solution of the problem of phase ambiguity:
		the MIR technique
	9.4.5	Anomalous scattering: a complementary (or alternative)
		approach to the solution of the phase problem
	9.4.6	
		anomalous dispersion (MAD) technique
	9.4.7	The use of anomalous scattering in the identification
		of ionic species bound to a protein
	9.4.8	
		absolute configuration of the macromolecule
	9.4.9	The treatment of errors
	9.4.10	The refinement of heavy-atom parameters
	9.4.11	Maximum-likelihood and Bayesian estimates: an alternative
		approach in phase refinement

9.4.12 Picking up minor heavy-atom sites: the difference-Fourier

and improve the electron-density map

Density modification: how to solve the phase ambiguity

synthesis

9.4.13

		9.4.16 The rotation matrix C and the choice of variables
		9.4.17 Translation functions
		9.4.18 Self-rotation and self-translation functions: improving the
		electron-density maps
		9.4.19 Practical hints in molecular replacement
		9.4.20 Ab initio methods in macromolecular crystallography
	9.5	The interpretation of the electron-density maps and the
		refinement of the model
		9.5.1 The interpretation of the electron-density maps
		9.5.2 Interactive computer graphics and model building
		9.5.3 The refinement of the structure
		9.5.4 Constrained versus restrained least squares
		9.5.5 Restrained and constrained least squares
		9.5.6 Crystallographic refinement by molecular dynamics
		9.5.7 The strategy of the refinement of protein structures
		9.5.8 R factor and R_{free} : structure validation
		9.5.9 Thermal parameters, disorder and TLS refinement
		9.5.10 The organization of solvent
		9.5.11 The influence of crystal packing
		9.5.12 Dynamical studies: time-resolved crystallography
		endices
	9.A	Some formulae for isomorphous replacement and
		anomalous dispersion
		Translation functions
		Conventions and symbols for amino acids and peptides
	9.D	Software programs available for macromolecular crystallography
		calculations
	Refe	rences
10	Phy	vsical properties of crystals: phenomenology
		modelling
	Mic	hele Catti
	10.1	Introduction
	10.2	Crystal anisotropy and tensors
		10.2.1 Tensorial quantities
		10.2.2 Symmetry of tensorial properties
	10.3	Overview of physical properties
	10.4	Electrical properties of crystals
		10.4.1 Pyroelectricity and ferroelectricity
		10.4.2 Dielectric impermeability and optical properties
	10.5	Elastic properties of crystals
		10.5.1 Crystal strain

9.4.14 Rotation and translation functions and the molecular

replacement method

the rotation function

9.4.15 The first step in molecular replacement:

	10.5.2	Inner deformation	
	10.5.3	Stress tensor	
	10.5.4	Elasticity tensor	
		Examples and applications	
10.6	0.6 Piezoelectricity		
	10.6.1	Symmetry properties of the piezoelectric tensor	
10.7	Modelli	ing of structural and elastic behaviour	
		Atomistic potential functions	
		Athermal equation of state	
		Elastic constants	
10.8	Crystal	defects	
10.9	Experimental methods		
10.10	Planar d	lefects	
10.11	Line def	fects: dislocations	
	10.11.1	The Burgers circuit	
	10.11.2	X-ray topography of dislocations	
		Energy of a dislocation	
		Motion and interaction of dislocations	
		Partial dislocations	
	10.11.6	Small-angle grain boundaries	
0.12	Point defects		
0.13	Thermal distribution of defects		
0.14	Diffusion		
0.15	Ionic conductivity		
ppen	dices		
0.A.1	Properties of second-rank tensors		
0.A.2	Eigenvalues and eigenvectors		
	Representation surfaces and their properties		
eferei	nces		