This is an excellent textbook on analysis and it has several unique features: Proofs of heat kernel estimates, the Nash inequality and the logarithmic Sobolev inequality are topics that are seldom treated on the level of a textbook. Best constants in several inequalities, such as Young's inequality and the logarithmic Sobolev inequality, are also included. A thorough treatment of rearrangement inequalities and competing symmetries appears in book form for the first time. There is an extensive treatment of potential theory and its applications to quantum mechanics, which, again, is unique at this level. Uniform convexity of L^p space is treated very carefully. The presentation of this important subject is highly unusual for a textbook. All the proofs provide deep insights into the theorems. This book sets a new standard for a graduate textbook in analysis.

-Shing-Tung Yau, Harvard University

For some number of years, Rudin's "Real and Complex", and a few other analysis books, served as the canonical choice for the book to use, and to teach from, in a first year grad analysis course. Lieb-Loss offers a refreshing alternative: It begins with a down-toearth intro to measure theory, L^p and all that ... It aims at a wide range of essential applications, such as the Fourier transform, and series, inequalities, distributions, and Sobolev spaces—PDE, potential theory, calculus of variations, and math physics (Schrödinger's equation, the hydrogen atom, Thomas-Fermi theory ... to mention a few). The book should work equally well in a one-, or in a two-semester course. The first half of the book covers the basics, and the rest will be great for students to have, regardless of whether or not it gets to be included in a course.

-Palle E. T. Jorgensen, University of Iowa

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-14

	vuii
Preface to the First Edition	XVII
Preface to the Second Edition	xxi
CHAPTER 1. Measure and Integration	1
1.1 Introduction	1
1.2 Basic notions of measure theory	4
1.3 Monotone class theorem	9
1.4 Uniqueness of measures	11
1.5 Definition of measurable functions and integrals	12
1.6 Monotone convergence	17
1.7 Fatou's lemma	18
1.8 Dominated convergence	19
1.9 Missing term in Fatou's lemma	21
1.10 Product measure	23
1.11 Commutativity and associativity of product measures	24
1.12 Fubini's theorem	25
1.13 Layer cake representation	26
1.14 Bathtub principle	28
1.15 Constructing a measure from an outer measure	29
1.16 Uniform convergence except on small sets	31
1.17 Simple functions and really simple functions	32
1.18 Approximation by really simple functions	34

1.19	Approximation by C^{∞} functions	36
Exercises		37
СНАРТ	TER 2. L^p -Spaces	41
2.1	Definition of L^p -spaces	41
2.2	Jensen's inequality	44
2.3	Hölder's inequality	45
2.4	Minkowski's inequality	47
2.5	Hanner's inequality	49
2.6	Differentiability of norms	51
2.7	Completeness of L^p -spaces	52
2.8	Projection on convex sets	53
2.9	Continuous linear functionals and weak convergence	54
2.10	Linear functionals separate	56
2.11	Lower semicontinuity of norms	57
2.12	Uniform boundedness principle	58
2.13	Strongly convergent convex combinations	60
2.14	The dual of $L^p(\Omega)$	61
2.15	Convolution	64
2.16	Approximation by C^{∞} -functions	64
2.17	Separability of $L^p(\mathbb{R}^n)$	67
2.18	Bounded sequences have weak limits	68
2.19	Approximation by C_c^{∞} -functions	69
2.20	Convolutions of functions in dual $L^p(\mathbb{R}^n)$ -spaces are	
	continuous	70
2.21	Hilbert-spaces	71
Exercises		75
CHAPT	TER 3. Rearrangement Inequalities	79
3.1	Introduction	79
3.2	Definition of functions vanishing at infinity	80
3.3	Rearrangements of sets and functions	80
3.4	The simplest rearrangement inequality	82
3.5	Nonexpansivity of rearrangement	83

3.6	Riesz's rearrangement inequality in one-dimension	84
3.7	Riesz's rearrangement inequality	87
3.8	General rearrangement inequality	93
3.9	Strict rearrangement inequality	93
Exercises		95
CHAPT	TER 4. Integral Inequalities	97
4.1	Introduction	97
4.2	Young's inequality	98
4.3	Hardy–Littlewood–Sobolev inequality	106
4.4	Conformal transformations and stereographic projection	110
4.5	Conformal invariance of the Hardy–Littlewood–Sobolev inequality	114
4.6	Competing symmetries	117
4.7	Proof of Theorem 4.3: Sharp version of the Hardy-	119
10	Action of the conformal group on optimizers	120
4.8	Action of the comormal group on optimizers	120
Exercise	s . Use light to provid with the definer intertainty if	121
CHAP'	TER 5. The Fourier Transform	125
5.1	Definition of the L^1 Fourier transform	125
5.2	Fourier transform of a Gaussian	127
5.3	Plancherel's theorem	128
5.4	Definition of the L^2 Fourier transform	129
5.5	Inversion formula	130
5.6	The Fourier transform in $L^p(\mathbb{R}^n)$	130
5.7	The sharp Hausdorff–Young inequality	131
5.8	8 Convolutions	132
5.9	Fourier transform of $ x ^{\alpha-n}$	132
5.10	Extension of 5.9 to $L^p(\mathbb{R}^n)$	133
Exercise	es	135
CHAP	TER 6. Distributions	137
6.1	Introduction	137

	62	Test functions (The space $\mathcal{D}(\Omega)$)	138
	6.3	Definition of distributions and their convergence	138
	6.4	Locally summable functions $L_{p}^{p}(\Omega)$	139
	6.5	Eventions are uniquely determined by distributions	140
	6.6	Derivatives of distributions	141
	6.7	Definition of $W^{1,p}(\Omega)$ and $W^{1,p}(\Omega)$	142
	6.8	Interchanging convolutions with distributions	144
	6.9	Fundamental theorem of calculus for distributions	145
	6.10	Equivalence of classical and distributional derivatives	146
	6.11	Distributions with zero derivatives are constants	148
	6.12	Multiplication and convolution of distributions by C^{∞} -functions	148
	6.13	Approximation of distributions by C^{∞} -functions	149
	6.14	Linear dependence of distributions	150
	6.15	$C^{\infty}(\Omega)$ is 'dense' in $W^{1,p}_{loc}(\Omega)$	151
	6.16	Chain rule	152
	6.17	Derivative of the absolute value	154
	6.18	Min and Max of $W^{1,p}$ -functions are in $W^{1,p}$	155
	6.19	Gradients vanish on the inverse of small sets	157
	6.20	Distributional Laplacian of Green's functions	158
	6.21	Solution of Poisson's equation	159
	6.22	Positive distributions are measures	161
	6.23	Yukawa potential	166
	6.24	The dual of $W^{1,p}(\Omega)$	169
Exe	ercises		170
CH	IAP	TER 7. The Sobolev Spaces H^1 and $H^{1/2}$	173
	7.1	Introduction	173
	7.2	Definition of $H^1(\Omega)$	173
	7.3	Completeness of $H^1(\Omega)$	174
	7.4	Multiplication by functions in $C^{\infty}(\Omega)$	175
	7.5	Remark about $H^1(\Omega)$ and $W^{1,2}(\Omega)$	176
	7.6	Density of $C^{\infty}(\Omega)$ in $H^{1}(\Omega)$	176
	7.7	Partial integration for functions in $H^1(\mathbb{R}^n)$	177
	7.8	Convexity inequality for gradients	179

	7.9	Fourier characterization of $H^1(\mathbb{R}^n)$	181
	•	Heat kernel	182
	7.10	$-\Delta$ is the infinitesimal generator of the heat kernel	183
	7.11	Definition of $H^{1/2}(\mathbb{R}^n)$	183
	7.12	Integral formulas for $(f, p f)$ and $(f, \sqrt{p^2 + m^2} f)$	186
	7.13	Convexity inequality for the relativistic kinetic	
		energy	187
	7.14	Density of $C_c^{\infty}(\mathbb{R}^n)$ in $H^{1/2}(\mathbb{R}^n)$	188
	7.15	Action of $\sqrt{-\Delta}$ and $\sqrt{-\Delta + m^2} - m$ on distributions	188
	7.16	Multiplication of $H^{1/2}$ -functions by C^{∞} -functions	189
	7.17	Symmetric decreasing rearrangement decreases kinetic	
		energy	190
	7.18	Weak limits	193
	7.19	Magnetic fields: The H^1_A -spaces	194
	7.20	Definition of $H^1_A(\mathbb{R}^n)$	194
	7.21	Diamagnetic inequality	195
	7.22	$C_c^{\infty}(\mathbb{R}^n)$ is dense in $H^1_A(\mathbb{R}^n)$	196
Exe	rcises		197
CH	AP	TER 8. Sobolev Inequalities	201
	8.1	Introduction	201
	8.2	Definition of $D^1(\mathbb{R}^n)$ and $D^{1/2}(\mathbb{R}^n)$	203
	8.3	Sobolev's inequality for gradients	204
	8.4	Sobolev's inequality for $ p $	206
	8.5	Sobolev inequalities in 1 and 2 dimensions	207
	8.6	Weak convergence implies strong convergence on small set	s 210
	8.7	Weak convergence implies a.e. convergence	214
	8.8	Sobolev inequalities for $W^{m,p}(\Omega)$	215
	8.9	Rellich–Kondrashov theorem	216
	8.10	Nonzero weak convergence after translations	217
	8.11	Poincaré's inequalities for $W^{m,p}(\Omega)$	220
	8.12	Poincaré–Sobolev inequality for $W^{m,p}(\Omega)$	221
	8.13	Nash's inequality	222
	8.14	The logarithmic Sobolev inequality	225
	8.15	A glance at contraction semigroups	227

8.16	Equivalence of Nash's inequality and smoothing estimates	229
8.17	Application to the heat equation	231
8.18	Derivation of the heat kernel via logarithmic Sobolev in- equalities	234
Exercises		237
СНАРТ	TER 9. Potential Theory and Coulomb Energies	239
9.1	Introduction	239
9.2	Definition of harmonic, subharmonic, and superharmonic functions	240
9.3	Properties of harmonic, subharmonic, and superharmonic	
	functions	241
9.4	The strong maximum principle	246
9.5	Harnack's inequality	247
9.6	Subharmonic functions are potentials	248
9.7	Spherical charge distributions are 'equivalent' to point charges	251
9.8	Positivity properties of the Coulomb energy	252
9.9	Mean value inequality for $\Delta - \mu^2$	254
9.10	Lower bounds on Schrödinger 'wave' functions	256
9.11	Unique solution of Yukawa's equation	257
Exercises		258
CHAPT	TER 10. Regularity of Solutions of Poisson's	
	Equation	259
10.1	Introduction	259
10.2	Continuity and first differentiability of solutions of Poisson's equation	262
10.3	Higher differentiability of solutions of Poisson's equation	264
CHAPT	TER 11. Introduction to the Calculus of Variations	269
11.1	Introduction	269
11.2	Schrödinger's equation	271
11.3	Domination of the potential energy by the kinetic energy	272
11.4	Weak continuity of the potential energy	276
11.5	Existence of a minimizer for E_0	277

11.6	Higher eigenvalues and eigenfunctions	279
11.7	Regularity of solutions	281
11.8	Uniqueness of minimizers	282
11.9	Uniqueness of positive solutions	283
11.10	The hydrogen atom	284
11.11	The Thomas–Fermi problem	285
11.12	Existence of an unconstrained Thomas–Fermi minimizer	286
11.13	Thomas–Fermi equation	287
11.14	The Thomas–Fermi minimizer	289
11.15	The capacitor problem	291
11.16	Solution of the capacitor problem	295
11.17	Balls have smallest capacity	298
Exercises		299
CHAPT	TER 12. More about Eigenvalues	301
12.1	Min-max principles	302
12.2	Generalized min-max	304
12.3	Bound for eigenvalue sums in a domain	306
12.4	Bound for Schrödinger eigenvalue sums	308
12.5	Kinetic energy with antisymmetry	313
12.6	The semiclassical approximation	316
12.7	Definition of coherent states	318
12.8	Resolution of the identity	319
12.9	Representation of the nonrelativistic kinetic energy	321
12.10	Bounds for the relativistic kinetic energy	321
12.11	Large N eigenvalue sums in a domain	322
12.12	Large N asymptotics of Schrödinger eigenvalue sums	325
Exercises		329
List of S	ymbols	333
Referenc	es	337
Index		343