Bringing statistical methods for reliability testing in line with the computer age

This volume presents state-of-the-art, computer-based statistical methods for reliability data analysis and test planning for industrial products. Statistical Methods for Reliability Data updates and improves established techniques as it demonstrates how to apply the new graphical, numerical, or simulation-based methods to a broad range of models encountered in reliability data analysis. It includes methods for planning reliability studies and analyzing degradation data, simulation methods used to complement large-sample asymptotic theory, general likelihood-based methods of handling arbitrarily censored data and truncated data, and more. In this book, engineers and statisticians in industry and academia will find:

- A wealth of information and procedures developed to give products a competitive edge
- Simple examples of data analysis computed with the S-PLUS system—for which a suite of functions and commands is available over the Internet
- End-of-chapter, real-data exercise sets
- Hundreds of computer graphics illustrating data, results of analyses, and technical concepts

An essential resource for practitioners involved in product reliability and design decisions, *Statistical Methods for Reliability Data* is also an excellent textbook for on-the-job training courses, and for university courses on applied reliability data analysis at the graduate level.

WILLIAM Q. MEEKER, PhD, is Professor of Statistics and Distinguished Professor of Liberal Arts and Sciences at Iowa State University. He is a Fellow of the American Statistical Association and an elected member of the International Statistics Institute. Among his many awards and honors are the Youden Prize and two Wilcoxon Prizes as well as two awards for outstanding teaching at Iowa State. He is coauthor of Statistical Intervals: A Guide for Practitioners (Wiley) and of numerous book chapters and publications in the engineering and statistical literature. A former editor of Technometrics and coeditor of Selected Tables in Mathematical Statistics, he is currently Associate Editor for International Statistical Review. LUIS A. ESCOBAR, PhD, is a Professor in the Department of Experimental Statistics at Louisiana State University. His research and consulting interests include statistical analysis of reliability data, accelerated testing, survival analysis, and nonlinear models. An Associate Editor for Technometrics and the IIE Transactions of Quality and Reliability Engineering, Professor Escobar is a Fellow of the American Statistical Association and elected member of the International Statistics Institute. He is the author of several book chapters, and his publications have appeared in the engineering and statistical literature.

WILEY-INTERSCIENCE

John Wiley & Sons, Inc.
Professional, Reference and Trade Group
605 Third Avenue, New York, N.Y. 10158-0012
New York • Chichester • Weinheim
Brisbane • Singapore • Toronto

Pref	face	1.9. Largest Extreme Value Distribution, 86	,	XV
Ack	nowled			xi
1.	Reliab	oility Concepts and Reliability Data		1
	1.1.	Introduction, 2		
	1.2.	Examples of Reliability Data, 4		
	1.3.	General Models for Reliability Data, 15		
	1.4.	Repairable Systems and Nonrepairable Units, 19		
	1.5.	Strategy for Data Collection, Modeling, and Analysis, 20		
2.	Model	s, Censoring, and Likelihood for Failure-Time Data		26
	2.1.	Models for Continuous Failure-Time Processes, 27		
	2.2.	Models for Discrete Data from a Continuous Process, 32		
	2.3.	Censoring, 34		
	2.4.	Likelihood, 36		
3.	Nonpa	rametric Estimation		46
	3.1.	Introduction, 47		
	3.2.	Estimation from Singly Censored Interval Data, 47		
	3.3.	Basic Ideas of Statistical Inference, 48		
	3.4.	Confidence Intervals from Complete or Singly Censored Data,	50	
	3.5.	Estimation from Multiply Censored Data, 52		
	3.6.	Pointwise Confidence Intervals from Multiply Censored Data,	54	
	3.7.	Estimation from Multiply Censored Data with Exact Failures,		

	3.0.	Simultaneous Confidence Bands, 60	
	3.9.	Uncertain Censoring Times, 64	
	3.10.	Arbitrary Censoring, 65	
4.	Locati	on-Scale-Based Parametric Distributions	75
	4.1.	Introduction, 76	
	4.2.	Quantities of Interest in Reliability Applications, 76	
	4.3.	Location-Scale and Log-Location-Scale Distributions, 78	
	4.4.	Exponential Distribution, 79	
	4.5.	Normal Distribution, 80	
	4.6.	Lognormal Distribution, 82	
	4.7.	Smallest Extreme Value Distribution, 83	
	4.8.	Weibull Distribution, 85	
	4.9.	Largest Extreme Value Distribution, 86	
	4.10.	Logistic Distribution, 88	
	4.11.	Loglogistic Distribution, 89	
	4.12.	Parameters and Parameterization, 90	
	4.13.	Generating Pseudorandom Observations from a Specified	
		Distribution, 91	
5.	Other	Parametric Distributions	97
	5.1.	Introduction, 97	
	5.2.	Gamma Distribution, 98	
	5.3.	Generalized Gamma Distribution, 99	
	5.4.	Extended Generalized Gamma Distribution, 101	
	5.5.	Generalized F Distribution, 102	
	5.6.	Inverse Gaussian Distribution, 103	
	5.7.	Birnbaum-Saunders Distribution, 105	
	5.8.	Gompertz-Makeham Distribution, 108	
	5.9.	Comparison of Spread and Skewness Parameters, 110	
	5.10.	Distributions with a Threshold Parameter, 111	
	5.11.	Generalized Threshold-Scale Distribution, 113	
	5.12.	Other Methods of Deriving Failure-Time Distributions, 115	
6.	Proba	bility Plotting	122
	6.1.	Introduction, 122	
	6.2.		
	6.3.	Graphical Goodness of Fit, 127	

	6.4.	Probability Plotting Positions, 128	
	6.5.	Probability Plots with Specified Shape Parameters, 136	1
	6.6.	Notes on the Application of Probability Plotting, 141	
7.	Paran	netric Likelihood Fitting Concepts: Exponential Distribution	153
	7.1.	Introduction, 153	
	7.2.	Parametric Likelihood, 155	
	7.3.	Confidence Intervals for θ , 159	
	7.4.	Confidence Intervals for Functions of θ , 163	
	7.5.	Comparison of Confidence Interval Procedures, 164	
	7.6.	Likelihood for Exact Failure Times, 165	
	7.7.	Data Analysis with No Failures, 167	
8.	Maxin	num Likelihood for Log-Location-Scale Distributions	173
	8.1.	Introduction, 173	
	8.2.	Likelihood, 174	
	8.3.	Likelihood Confidence Regions and Intervals, 177	
	8.4.	Normal-Approximation Confidence Intervals, 186	
	8.5.	Estimation with Given σ , 192	
9.	Bootst	rap Confidence Intervals	204
	9.1.	Introduction, 204	
	9.2.	Bootstrap Sampling, 205	
	9.3.	Exponential Distribution Confidence Intervals, 208	
	9.4.	Weibull, Lognormal, and Loglogistic Distribution Confidence Intervals, 212	
	9.5.	Nonparametric Bootstrap Confidence Intervals, 217	
	9.6.	Percentile Bootstrap Method, 226	
0.	Planni	ing Life Tests	231
	10.1.	Introduction, 232	
	10.2.	Approximate Variance of ML Estimators, 236	
	10.3.	Sample Size for Unrestricted Functions, 238	
	10.4.	Sample Size for Positive Functions, 239	
	10.5.	Sample Sizes for Log-Location-Scale Distributions with Censoring, 240	

11.

12.

13.

14.

10.6.	Test Plans to Demonstrate Conformance with a Reliability Standard, 247	
10.7.	Some Extensions, 250	
Param	netric Maximum Likelihood: Other Models	254
11.1.	Introduction, 255	
11.2.	Fitting the Gamma Distribution, 256	
11.3.	Fitting the Extended Generalized Gamma Distribution, 257	
11.4.	Fitting the BISA and IGAU Distributions, 260	
11.5.	Fitting a Limited Failure Population Model, 262	
11.6.	Truncated Data and Truncated Distributions, 266	
11.7.	Fitting Distributions that Have a Threshold Parameter, 273	
Predic	tion of Future Random Quantities	289
12.1.	Introduction, 290	
12.2.	Probability Prediction Intervals (θ Given), 292	
12.3.	Statistical Prediction Interval (\theta Estimated), 293	
12.4.	The (Approximate) Pivotal Method for Prediction Intervals, 296	
12.5.	Prediction in Simple Cases, 298	
12.6.	Calibrating Naive Statistical Prediction Bounds, 300	
12.7.	Prediction of Future Failures from a Single Group of Units in the Field, 304	
12.8.	Prediction of Future Failures from Multiple Groups of Units with Staggered Entry into the Field, 308	
Degra	dation Data, Models, and Data Analysis	316
13.1.	Introduction, 317	
13.2.	Models for Degradation Data, 317	
13.3.	Estimation of Degradation Model Parameters 326	
13.4.	Models Relating Degradation and Failure, 327	
13.5.	Evaluation of $F(t)$, 328	
13.6.	Estimation of $F(t)$, 331	
13.7.	Bootstrap Confidence Intervals, 332	
13.8.	Comparison with Traditional Failure-Time Analyses, 333	
13.9.	Approximate Degradation Analysis, 336	
Introd	luction to the Use of Bayesian Methods for Reliability Data	343
14.1.	Introduction, 344	
	Using Bayes's Rule to Update Prior Information, 344	

15.

16.

17.

	14.3	3. Prior Information and Distributions, 345	
	14.4		
	14.5		
	14.6	Bayesian Prediction, 358	
	14.7		
5.	Syste	em Reliability Concepts and Methods	369
	15.1	. Introduction, 369	
	15.2	System Structures and System Failure Probability, 370	
	15.3	Estimating System Reliability from Component Data, 380	
	15.4.	Estimating Reliability with Two or More Causes of Failure, 382	
	15.5.	Other Topics in System Reliability, 386	
	Analy	ysis of Repairable System and Other Recurrence Data	393
	16.1.		
	16.2.	Nonparametric Estimation of the MCF, 396	
	16.3.		
	16.4.	Parametric Models for Recurrence Data, 406	
	16.5.	Tools for Checking Point-Process Assumptions, 409	
	16.6.	Maximum Likelihood Fitting of Poisson Process, 412	
	16.7.	Generating Pseudorandom Realizations from an NHPP Process 417	
	16.8.	Software Reliability, 419	
	Failur	e-Time Regression Analysis	427
	17.1.	Introduction, 428	
	17.2.	Failure-Time Regression Models, 429	
	17.3.	Simple Linear Regression Models, 432	
	17.4.	Standard Errors and Confidence Intervals for Regression Models, 435	
	17.5.	Regression Model with Quadratic μ and Nonconstant σ , 439	
	17.6.	Checking Model Assumptions, 443	
	17.7.	Models with Two or More Explanatory Variables, 447	
	17.8.	Product Comparison: An Indicator-Variable Regression Model, 450	
	17.9.	The Proportional Hazards Failure-Time Model, 455	
1	7.10.	General Time Transformation Functions, 459	

18.	Accele	erated Test Models	466
	18.1.	Introduction, 466	
	18.2.	Use-Rate Acceleration, 470	
	18.3.	Temperature Acceleration, 471	
	18.4.	Voltage and Voltage-Stress Acceleration, 479	
	18.5.	Acceleration Models with More than One Accelerating Variable, 484	
	18.6.	Guidelines for the Use of Acceleration Models, 487	
19.	Accele	erated Life Tests	493
	19.1.	Introduction, 493	
	19.2.	Analysis of Single-Variable ALT Data, 495	
	19.3.	Further Examples, 504	
	19.4.	Some Practical Suggestions for Drawing Conclusions from ALT Data, 515	
	19.5.	Other Kinds of Accelerated Tests, 517	
	19.6.	Potential Pitfalls of Accelerated Life Testing, 522	
20.	Planni	ing Accelerated Life Tests	534
	20.1.	Introduction, 535	
	20.2.	Evaluation of Test Plans, 538	
	20.3.	Planning Single-Variable ALT Experiments, 540	
	20.4.	Planning Two-Variable ALT Experiments, 547	
	20.5.	Planning ALT Experiments with More than Two Experimental Variables, 558	
21.	Accele	erated Degradation Tests	563
	21.1.	Introduction, 564	
	21.2.	Models for Accelerated Degradation Test Data, 565	
	21.3.	Estimating Accelerated Degradation Test Model Parameters, 566	
	21.4.	Estimation of Failure Probabilities, Distribution Quantiles, and Other Functions of Model Parameters, 567	
	21.5.	Confidence Intervals Based on Bootstrap Samples, 568	
	21.6.	Comparison with Traditional Accelerated Life Test Methods, 569	
	21.7.	Approximate Accelerated Degradation Analysis, 574	
22.	Case S	Studies and Further Applications	582
	22.1.	Dangers of Censoring in a Mixed Population, 583	
	22.2	Using Prior Information in Accelerated Testing 586	

CONTENTS	xiii
22.3. An LFP/Competing Risk Model, 590	
22.4. Fatigue-Limit Regression Model, 593	
22.5. Planning Accelerated Degradation Tests, 597	
Epilogue	602
Appendix A. Notation and Acronyms	609
Appendix B. Some Results from Statistical Theory	617
B.1. cdfs and pdfs of Functions of Random Variables, 617	
B.2. Statistical Error Propagation—The Delta Method, 619	
B.3. Likelihood and Fisher Information Matrices, 621	
B.4. Regularity Conditions, 621	
B.5. Convergence in Distribution, 623	
B.6. Outline of General ML Theory, 625	
Appendix C. Tables	629
References	645
Author Index	665
Subject Index	671