Now available in paperback, this celebrated book has been prepared with readers' needs in mind, giving a systematic treatment of the subject whilst retaining its vitality. The authors' aim is not to present the subject of Brownian motion as a dry part of mathematical analysis, but to convey its real meaning and fascination. The opening, heuristic chapter does just this, and it is followed by a comprehensive and self-contained account of the foundations of the theory of stochastic processes. Chapter III is a lively and readable treatment of the theory of Markov processes. Together with Volume 2: Itô Calculus, this book helps equip graduate students for research into a subject of great intrinsic interest and wide application in physics, biology, engineering, finance and computer science.

Cambridge Mathematical Library

Cambridge University Press has a long and honourable history of publishing in mathematics and counts many classics of the mathematical literature within its list. Some of these titles have been out of print for many years now and yet the methods which they espouse are still of considerable relevance today.

The Cambridge Mathematical Library will provide an inexpensive edition of these titles in a durable paperback format and at a price which will make the books attractive to individuals wishing to add them to their personal libraries. It is intended that certain volumes in the series will have forewords, written by leading experts in the subject, which will place the title in its historical and mathematical context.

Some Frequently Used Notation

CHAPTER I. BROWNIAN MOTION

1. INTRODUCTION

2.

3.

1.	What is Brownian motion, and why study it?	1
2.	Brownian motion as a martingale	2
3.	Brownian motion as a Gaussian process	3
4.	Brownian motion as a Markov process	5
5.	Brownian motion as a diffusion (and martingale)	7
BA	SICS ABOUT BROWNIAN MOTION	10
6.	Existence and uniqueness of Brownian motion	10
7.	Skorokhod embedding	13
8.	Donsker's Invariance Principle	16
9.	Exponential martingales and first-passage distributions	18
10.	Some sample-path properties	19
11.	Quadratic variation	21
12.	The strong Markov property	21
13.	Reflection	25
14.	Reflecting Brownian motion and local time	27
15.	Kolmogorov's test	31
16.	Brownian exponential martingales and the Law of the	
	Iterated Logarithm	31
BR	OWNIAN MOTION IN HIGHER DIMENSIONS	36
17.	Some martingales for Brownian motion	36
18.	Recurrence and transience in higher dimensions	38
19.	Some applications of Brownian motion to complex analysis	39
20.	Windings of planar Brownian motion	43
21.	Multiple points, cone points, cut points	45

1

22. 23.	Potential theory of Brownian motion in \mathbb{R}^d $(d \ge 3)$ Brownian motion and physical diffusion	46 51
GA	USSIAN PROCESSES AND LÉVY PROCESSES	55
	Gaussian processes	
24.	Existence results for Gaussian processes	55
25.	Continuity results	59
26.	Isotropic random flows	66
27.	Dynkin's Isomorphism Theorem	71
	Lévy processes	
28.	Lévy processes	73
29.	Fluctuation theory and Wiener-Hopf factorisation	80
30.	Local time of Levy processes	82
	TED IL SOME CLASSICAL TURODU	
nAr	TER II. SOME CLASSICAL THEORY	
BA	SIC MEASURE THEORY	85
	Measurability and measure	
1.	Measurable spaces; σ -algebras; π -systems; d-systems	85
2.	Measurable functions	88
• 3.	Monotone-Class Theorems	90
4.	Measures; the uniqueness lemma; almost everywhere; a.e.(μ , Σ)	91
5.	Carathéodory's Extension Theorem	93
. 6.	Inner and outer μ -measures; completion	94
	Integration	
7.	Definition of the integral $\int f d\mu$	95
8.	Convergence theorems	96
9.	The Radon-Nikodým Theorem; absolute continuity;	
10	$\lambda \ll \mu$ notation; equivalent measures	98
10.	Inequalities; \mathcal{L}^{p} and L^{p} spaces $(p \ge 1)$	99
	Product structures	
11.	Product σ-algebras	101
12.	Product measure; Fubini's Theorem	102
13.	Exercises	104
BA	SIC PROBABILITY THEORY	108
	Probability and expectation	05
14.	Probability triple; almost surely (a.s.); a.s.(P), a.s.(P, F)	108

xii

2

	15.	lim sup E _n ; First Borel-Cantelli Lemma	109
	16.	Law of random variable; distribution function; joint law	110
	17.	Expectation; $\mathbf{E}(X; F)$	110
	18.	Inequalities: Markov, Jensen, Schwarz, Tchebychev	111
	19.	Modes of convergence of random variables	113
		Uniform integrability and \mathscr{L}^1 convergence	
	20.	Uniform integrability	114
	21.	\mathcal{L}^1 convergence	115
		Independence	
	22.	Independence of σ -algebras and of random variables	116
	23.	Existence of families of independent variables	118
	24.	Exercises	119
3.	ST	OCHASTIC PROCESSES	119
		The Daniell-Kolmogorov Theorem	
	25.	(E^{T}, \mathscr{E}^{T}) ; σ -algebras on function space: cylinders and σ -cylinders	119
	26.	Infinite products of probability triples	121
	27.	Stochastic process; sample function; law	121
	28.	Canonical process	122
	29.	Finite-dimensional distributions; sufficiency; compatibility	123
	30.	The Daniell-Kolmogorov (DK) Theorem: 'compact	3 22
		metrizable' case	124
	31.	The Daniell-Kolmogorov (DK) Theorem: general case	126
	32.	Gaussian processes; pre-Brownian motion	127
	33.	Pre-Poisson set functions	128
		Beyond the DK Theorem	
	34.	Limitations of the DK Theorem	128
	35.	The role of outer measures	129
	36.	Modifications; indistinguishability	130
	37.	Direct construction of Poisson measures and subordinators,	
		and of local time from the zero set; Azéma's martingale	131
	38.	Exercises	136
4.	DIS	SCRETE-PARAMETER MARTINGALE THEORY	137
		Conditional expectation	
	30.	Fundamental theorem and definition	137
	40.	Notation; agreement with elementary usage	138
	41.	Properties of conditional expectation: a list	139
	42.	The role of versions: regular conditional probabilities and pdfs	140

xiii

	43.	A counterexample	141
	44.	A uniform-integrability property of conditional expectations	142
		(Discrete-parameter) martingales and supermartingales	
	45.	Filtration; filtered space; adapted process; natural filtration	143
	46.	Martingale; supermartingale; submartingale	144
	47.	Previsible process; gambling strategy; a fundamental principle	144
	48.	Doob's Upcrossing Lemma	145
	49.	Doob's Supermartingale-Convergence Theorem	146
	50.	\mathscr{L}^1 convergence and the UI property	147
	51.	The Lévy-Doob Downward Theorem	148
	52.	Doob's Submartingale and \mathcal{L}^p Inequalities	150
	53.	Martingales in \mathcal{L}^2 ; orthogonality of increments	152
	54.	Doob decomposition	153
	55.	The $\langle M \rangle$ and [M] processes	154
		Stopping times, optional stopping and optional sampling	
	56.	Stopping time	155
	57.	Optional-stopping theorems	156
	58.	The pre-T σ -algebra \mathcal{F}_T	158
	59.	Optional sampling	159
	60.	Exercises	161
5.	co	NTINUOUS-PARAMETER SUPERMARTINGALES	163
		Regularisation: R-supermartingales	- 91
	61.	Orientation	163
	62.	Some real-variable results	163
	63.	Filtrations; supermartingales; R-processes, R-supermartingales	166
	64.	Some important examples	167
	65.	Doob's Regularity Theorem: Part 1	169
	66.	Partial augmentation	171
	67.	Usual conditions; R-filtered space; usual augmentation;	
	10	R-regularisation	172
	68.	A necessary pause for thought	174
	69.	Convergence theorems for R-supermartingales	175
	70.	Inequalities and \mathcal{L}^p convergence for R-submartingales	177
	71.	Martingale proof of Wiener's Theorem; canonical	
		Brownian motion	178
	12.	Brownian motion relative to a filtered space	180
	14	Stopping times	
	73.	Stopping time T; pre-T σ -algebra \mathscr{G}_T ; progressive process	181
	74.	First-entrance (début) times; hitting times; first-approach times:	
		the easy cases	183

xv

75	Why 'completion' in the usual conditions has to be introduced	
76	Début and Section Theorems	184
77	Optional Sampling for R-supermartingales under the	180
70	usual conditions	188
78	I wo important results for Markov-process theory	191
19.	Exercises	192
6. PI	ROBABILITY MEASURES ON LUGIN CD.	
1	WEASURES ON LUSIN SPACES	200
16 269	Weak convergence'	
80.	C(J) and $Pr(J)$ when J is compact Hausdorff	202
81.	C(J) and $Pr(J)$ when J is compact metrizable	202
82.	Polish and Lusin spaces	205
03.	Proportor's Theorem S is a Lusin space;	
84.	Some useful convergence results	207
85.	Tightness in $Pr(W)$ when W is the path areas W	211
86.	The Skorokhod representation of $C_1(S)$ converses $W := C([0, \infty); \mathbb{R})$	213
87.	Weak convergence versus convergence of finite-dimensional	215
	distributions	216
	Regular conditional much differ	210
00	Regular conditional probabilities	
88.	Some preliminaries	217
09.	The main existence theorem	218
90.	Canonical Brownian Motion $CBM(\mathbb{R}^{N})$; Markov property of \mathbb{R}^{N} laws	
91.	Exercises	220
	and processes and right processes being a second second	222
TTAD	AY PROCESSES	
HAP	TER III. MARKOV PROCESSES	
TR	ANSITION FUNCTIONS AND RESOLVENTS	227
1.	What is a (continuous-time) Markov process?	221
2.	The finite-state-space Markov chain	227
3.	Transition functions and their resolvents	228
4.	Contraction semigroups on Banach spaces	231
5.	The Hille-Yosida Theorem	234
FEL	LER-DYNKIN PROCESSES	257
6	Feller_Dunkin (ED)	240
7.	The existence theorem: comparing the	240
8.	Strong Markov property: and in in processes	243
9.	Strong Markov property: full version	247
	property. Juli version; Blumenthal's 0-1 Law	240

C

1.

2.

CO	N	TE	N	TS
----	---	----	---	----

	11.	I MART LATT CONTINUES	200
	12	Characteristic encreter	255
	12.	Faller Dunkin diffusions	256
	13.	Characterisation of continuous real L fun analysis	258
	14.	Consolidation	261
	13.	Consolidation	262
3.	AD	DITIVE FUNCTIONALS	263
	16.	PCHAFs; λ -excessive functions; Brownian local time	263
	17.	Proof of the Volkonskii–Sur–Meyer Theorem	267
	18.	Killing	269
	19.	The Feynmann-Kac formula	272
	20.	A Ciesielski-Taylor Theorem	275
	21.	Time-substitution	277
	22.	Reflecting Brownian motion	278
	23.	The Feller-McKean chain	281
	24.	Elastic Brownian motion; the arcsine law	282
4.	AP	PROACH TO RAY PROCESSES:	
	TH	E MARTIN BOUNDARY	284
	25.	Ray processes and Markov chains	284
	26.	Important example: birth process	286
	27.	Excessive functions, the Martin kernel and Choquet theory	288
	28.	The Martin compactification	292
	29.	The Martin representation; Doob-Hunt explanation	295
	30.	R. S. Martin's boundary	297
	31.	Doob-Hunt theory for Brownian motion	298
222	32.	Ray processes and right processes	302
5.	RA	Y PROCESSES	303
	33	Orientation	202
	34.	Ray resolvents	303
	35.	The Ray-Knight compactification	304
		What is a continuous-time) Marine a contraction a ci tad W	500
		Ray's Theorem: analytical part	
	36.	From semigroup to resolvent	309
	37.	Branch-points	313
	38.	Choquet representation of 1-excessive probability measures	315
	-	Ray's Theorem: probabilistic part	
	39.	The Ray process associated with a given entrance law	316
	40.	Strong Markov property of Ray processes	318
	41.	The role of branch-points	319
		Strong Markny property: Bill sensions fillumentinales sensions	

xvi

		CONTENTS	xvii
6.	AP	PLICATIONS	321
		Martin boundary theory in retrospect	
	42. 43. 44. 45.	From discrete to continuous time Proof of the Doob-Hunt Convergence Theorem The Choquet representation of Π -excessive functions Doob <i>h</i> -transforms	321 323 325 327
		Time reversal and related topics	
	46. 47. 48. 49.	Nagasawa's formula for chains Strong Markov property under time reversal Equilibrium charge BM (R) and BES (3): splitting times	328 330 331 332
		A first look at Markov-chain theory	
	50. 51. 52.	Chains as Ray processes Significance of q_i Taboo probabilities; first-entrance decomposition	334 337 337
	53. 54. 55.	The Q-matrix; DK conditions Local-character condition for Q Totally instantaneous Q-matrices	339 340 342
	56. 57.	Last exits Excursions from b	343 345
	58. 59. 60.	Kingman's solution of the 'Markov characterization problem' Symmetrisable chains An open problem	347 348 349
Re	feren	ices for Volumes 1 and 2	351
In	dex t	o Volumes 1 and 2	375