Human Population Genetics and Genomics

By Alan R. Templeton

Human genetics and genomics research often employs tools and approaches derived from population genetics, and knowledge of the underlying basis and principles of these tools is needed for their proper use and interpretation. These studies also often employ statistical approaches and analysis, so an understanding of some basic statistical theory is also needed.

Human Population Genetics and Genomics provides researchers and students with knowledge of population genetics and relevant statistical approaches in order to become more effective users of modern genetic, genomic, and statistical tools. In-depth chapters offer thorough discussions of systems of mating, genetic drift, gene flow and subdivided populations, human population history, genotype and phenotype, detecting selection, units and targets of natural selection, adaptation to temporally and spatially variable environments, selection in age-structured populations, and genomics and society.

THIS BOOK

- comprehensively explains the use of population genetics and genomics in medical applications and research employing new genetic technologies
- discusses the relevance of population genetics and genomics to major social issues, including race and the dangers of modern eugenics proposals
- provides an overview of how population genetics and genomics helps us understand where we came from as a species and how we evolved into who we are now

ABOUT THE AUTHOR

Alan R. Templeton, Ph.D.

Dr. Templeton is the Charles Rebstock Emeritus Professor of Biology and Statistical Genomics at Washington University in St. Louis, Missouri, USA. In addition, he is a Visiting Researcher at the Rappaport Institute in Haifa, and a Visiting Professor at the Institute of Evolution and the Department of Evolutionary and Environmental Biology at the University of Haifa, Israel. He has been the President of the Society for the Study of Evolution, the Fulbright-Israel Distinguished Chair in the Natural Sciences and Engineering, and an editor or associate editor of several major scientific journals.

He is a fellow of the American Association for the Advancement of Science, a recipient of the David Murdock-Dole Award for outstanding contributions in human genetic studies, a recipient of the Burroughs-Wellcome Fund Innovation Award in Functional Genomics, and a fellow of the American Academy of Arts and Sciences. He has repeatedly been listed as an author of one of the top 1% most highly cited papers in the Life Sciences worldwide. He applies genomics and statistical population genetics to a variety of basic and applied problems on the genetics of complex diseases, evolutionary biology, human evolution, bioinformatics, and conservation biology.

Preface		xi
CHAPTER	1 Definition, Scope, and Premises of Human Population Genetics	1
	The Basic Premises of Population Genetics	
	Premise 1: DNA Can Replicate	2
	Premise 2: DNA Can Mutate and Recombine	16
	Premise 3: DNA and the Environment Interact to Produce Phenotypes	25
	Natural Selection and the Integration of the Three Premises	27
	References	28
CHAPTER	2 The Human Genome	31
OHA! IER	Components of the Nuclear Genome	
	Genes	
	Transposable Elements	
	Repetitive DNA	
	CG Islands	
	Centromeres	
	Telomeres	
	The Transcriptome	
	The Exome, Spliceosome, and Proteome	
	Epigenome	
	The Mitochondrial Genome	
	Mutation and Recombination in the Human Genomes	
	Mutation	
	Recombination	54
	References	57
CHAPTER	3 Systems of Mating	65
OHAI TER	Random Mating and the Hardy—Weinberg Law	
	Inbreeding	
	Pedigree Inbreeding.	
	System of Mating Inbreeding.	
	Assortative Mating	
	Disassortative Mating	
	Coexistence of Multiple Systems of Mating Within a Deme	
	References	

CHAPTER 4 Genetic Drift	101
The Fate of a Newly Arisen Mutation in a Large Population	
Genetic Drift in a Finite Population	
Effective Population Sizes	115
Genetic Drift and Linkage Disequilibrium	121
Genetic Drift and Neutral Mutations	122
References	126
CHAPTER 5 A Backward View of Genetic Drift: Coalescence	129
Basic Coalescent Model	130
Coalescence With Mutation	134
Haplotype Trees	140
Haplotype Trees, Population Trees, and Species Trees	146
Coalescence and Recombination	150
References	151
CHAPTER 6 Gene Flow and Subdivided Populations	155
A Two-Deme Model of Gene Flow.	
The Balance of Gene Flow and Genetic Drift	156
Gender-Biased Gene Flow	162
System of Mating and Gene Flow	163
Kin-Structured Migration	164
Admixture	165
Isolation by Distance and Resistance	171
Identifying Human Subpopulations	178
Population Subdivision, Isolation-By-Distance, and Effective Population Sizes	187
References	189
CHAPTER 7 Human Population History Over the Last Two Million Years	195
Haplotype Trees as a Window into the Past	
Population Trees	212
Ancient DNA—the Origins of the Human Gene Pool	223
Ancient DNA—the Last 25,000 Years	227
References	229
CHAPTER 8 Genotype and Phenotype	237
Fisher's Quantitative Genetic Model	
Classical Human Quantitative Genetic Analysis	
Measured Genotype Approaches to Quantitative Genetics	
Linkage Mapping	
Runs of Homozygosity	258

	Admixture Mapping	50
	Genome-Wide Association Studies	
	Classical Quantitative Genetics Versus Measured Genotype Approaches	
	References 2	
CHARTER		
CHAPTER	9 Natural Selection	
	A One-Locus, Two-Allele Model of Natural Selection	84
	Sickle-Cell and Malarial Adaptations: An Example of the Measured Genotype	
	Approach to Natural Selection	
	A Quantitative Genetic, Unmeasured Genotype Model of Natural Selection2	
	References	00
CHAPTER	10 Detecting Selection Through Its Interactions With Other	
	Evolutionary Forces	03
	Interaction of Selection With Mutation	03
	Interactions of Selection With Mutation and Genetic Drift	
	Interactions of Selection With Mutation, Genetic Drift, and Recombination	
	Genomics and Selection on Quantitative Traits	
	Detecting Selection With Samples Over Time	
	Detecting Selection Through Interactions With Admixture and Gene Flow	
	Detecting Selection With Multiple Statistics	
	References	
CHADTED		
CHAPTER	11 Units and Targets of Natural Selection	39
	The Unit of Selection	
	Targets of Selection	
	Genomes and Gametes	49
	Somatic Cells 3	54
	Mating Success	
	Fertility	63
	Family Selection	67
	Social Selection	74
	Multilocus Epistasis and Targets of Selection Above the Level of the Individual3	
	References	79
CHAPTER	the period to remperately and opations variable	
	Environments	87
	Coarse-Grained Spatial Heterogeneity	88
	Coarse-Grained Temporal Heterogeneity	96
	Fine-Grained Heterogeneity	03
	References	

CHAPTER 13 Selection in Age-Structured Populations	415
Basic Life History Theory and Fitness Measures	416
Genetic Variation in Life History Traits	422
The Evolution of Senescence	424
Demographic Transitions	431
References	433
CHAPTER 14 Human Population Genetics/Genomics and Society	437
CHAPTER 14 Human Population Genetics/Genomics and Society Do Human Races Exist?	
	437
Do Human Races Exist?	437
Do Human Races Exist?	437 449 456