"In this new book, Philip Allen has distilled a lifetime of insightful study of the Earth's surface into a wide ranging and rigorous synthesis of planetary sediment processes. *Sediment Routing Systems* is the first to use the idea of global sediment routing – 'following the sediment' – to provide a framework for synthesis across environments and scales, to integrate the source and sink sides of the routing system, and to link geochemical and particulate fluxes. It manages to do this in a quantitative framework that is carefully formulated, accessible, and perfectly pitched in clarity and detail. *Sediment Routing Systems* is a landmark and masterpiece; for many Earth scientists, it will be all they need in terms of global sediment dynamics."

Chris Paola, University of Minnesota

This cutting-edge summary combines ideas from several sub-disciplines, including geology, geomorphology, oceanography and geochemistry, to provide an integrated view of Earth surface dynamics in terms of sediment generation, transport and deposition. Introducing a global view of fundamental concepts underpinning source-to-sink studies, it provides an analysis of the component segments which make up sediment routing systems. The functioning of sediment routing systems is illustrated through calculations of denudation and sedimentation as well as the response to external drivers; with the final sections focusing on the stratigraphic record of sediment routing systems. Containing quantitative solutions to a wide range of problems in Earth surface dynamics, this book is suitable for graduate students as well as academic and professional researchers.

Cover illustration: aerial view of Iceland. Credit: Werner Van Steen/Getty Images Cover design: Andrew Ward CAMBRIDGE UNIVERSITY PRESS www.cambridge.org

	Pref	^f ace	4.4.1 Playini Geomorphicis denonto in Sedimentario Basino 4.2.1. Consultance Sediment Transision and Destroining of	page ix
	Par	tI A (Global View of Sediment Routing Systems	1
1	Sedi 1.1 1.2	How S	outing Systems: First Concepts ediment Routing Systems Function ediment Cascade	3 3 11
2	The 2.1 2.2 2.3	Mappin Topolo Global 2.3.1 2.3.2 2.3.3	Character of River Basins ng of the Terrestrial Segment of Sediment Routing Systems ogy of River Basins Particulate Sediment and Solute Delivery to the Ocean Run-off Particulate Loads Dissolved Solids cal Weathering Fluxes Associated with Glaciation	20 20 27 30 32 35 44 49
2			Learning Tectoric Presion Models of Forth and Islanding and	
3	3.1	Biogeo	chemistry of World Rivers Global Water Chemistry Chemistry of the Particulate Load The Estuarine Filter	54 54 56 60 61
	3.2	The Fa 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Particulate Organic Carbon Dissolved Organic Carbon Burial of Organic Carbon and Global Climate Organic Carbon in the Amazon Sediment Routing System Organic Carbon through Glacial-Interglacial Cycles	62 63 65 66 69 71
		3.2.6	Particulate Organic Carbon at Active and Passive Margins	74
	33	Nutrie	nt Fluxes	78

	Par	II The Segments of Sediment Routing Systems	81
4	The	Catchment-Fluvial Segment	83
	4.1	Hillslopes and Bedrock Channels	86
		4.1.1 Outlet Spacing of Transverse Drainage Basins	86
		4.1.2 Bedrock Channels	87
		4.1.3 Effect of Tectonic Uplift on River Long Profiles	92
		4.1.4 Hillslopes	93
	4.2	Basin-Margin Fans	100
	4.3	Axial versus Transverse Drainage	104
	4.4	Alluvial Rivers	108
		4.4.1 Fluvial Geomorphic Elements in Sedimentary Basins	108
		4.4.2 Long-Range Sediment Transport and Deposition	110
		4.4.3 River Planform Patterns and Long Profiles of Alluvial Rivers	114
	4.5	Floodplains as Sediment Stores	116
	4.6	Palaeohydrology of Rivers	128
5	The	Continental Shelf Segment	131
	5.1	Dynamics at River Mouths	131
	5.2	Natural Range of Deltaic and Subaqueous Clinoforms	140
	5.3	Simple Models of Delta Progradation	141
	5.4	Sediment Transport on the Shelf	151
	5.5	River Plumes and Dispersal Scaling	155
	5.6	The Bottom Boundary Layer	160
	5.7	Interaction between Ocean Currents and Coastal Waters	166
6	The Deep Marine Segment		
	6.1	Slope Morphology	170
	6.2	Sediment Transfer to the Deep Sea: Critical Role of Submarine Canyons	174
	6.3	Basin Plains and Deep Sea Fans	176
	6.4	Deep-Water Circulation	184
	6.5	Record of Glaciation in the Deep Sea	185
	Par	t III The Functioning of Sediment Routing Systems	191
7	Den	audation and Sedimentation	193
	7.1	Range of Techniques	193
	7.2	Controls on Sediment Yield and Erosion Rate	196
		7.2.1 Erosion Rate in Glaciated Basins	198
	7.3	The BQART Predictor	202
	7.4	Estimates of Erosion from Strontium Isotope Ratios	206
	7.5	Denudation from Low-Temperature Thermochronometry	211
		7.5.1 Fission Track Analysis	211
		7.5.2 Helium Diffusion: (U-Th)/He	216

C 4 4	
Contents	V11
	*11

	7.6	Denud	ation from Analysis of Cosmogenic Nuclides	218		
		7.6.1	Catchment-Averaged Erosion Rate from Cosmogenic Nuclide			
			Analysis Analysis	222		
	7.7	Sedimo	entation: Patterns, Rates and Hierarchies	226		
		7.7.1	Life-Span of Sedimentary Basins	226		
		7.7.2	Sedimentation Rates and Hierarchies	227		
		7.7.3	Stratigraphic Completeness	231		
		7.7.4	Bed Thickness Statistics	236		
8	Dyn	Dynamics of Sediment Routing Systems				
	8.1	Movin	g Boundaries	240		
		8.1.1	The Gravel Front and Gravel Cline	240		
		8.1.2	The Shoreline	244		
	8.2	Mass E	Balance	247		
	8.3	Stocha	stic Theory of Particle Trajectories	250		
	8.4	Toward	ds a Vocabulary for Tectonic Landscapes	256		
	8.5	Transie	ent Responses within Sediment Routing Systems	259		
		8.5.1	Alluvial Rivers	261		
		8.5.2	Hillslope Erosion	262		
		8.5.3	Catchment-Fan Systems	263		
		8.5.4	Growth of Extensional Fault Arrays	269		
		8.5.5	Lateral Growth of a Fault Tip	273		
		8.5.6	Knickpoint Migration	274		
		8.5.7	Unroofing of Tectonic Folds	277		
	8.6	Coupli	ng of Tectonics and Surface Processes	279		
		8.6.1	Orogenic Wedges and Foreland Basin Systems	280		
		8.6.2	Coupled Tectonic-Erosion Models of Foreland Basin Systems	285		
		8.6.3	Arrays of Contractional Folds	288		
	8.7	Transfo	ormation of Signals in Sediment Routing Systems	291		
	Part	t IV T	he Stratigraphic Record of Sediment Routing Systems	295		
9	Sedi	ment Pr	oduction, Evolution and Provenance	297		
	9.1	The Fo	rmation of Sediment	297		
	9.2	Precipi	tation, Vegetation and Erosion	304		
	9.3	Grain-S	Size Mix of Sediment Supplied to Basins	309		
		9.3.1	Simulations Using a Variable Grain-Size Mix in the Supply	313		
	9.4	Grain-S	Size Fractionation in Sediment Routing Systems	318		
		9.4.1	Downstream Changes in Hydraulic Geometry	318		
		9.4.2	Fractionation of Grain Size During Dispersal	319		
		9.4.3	Down-System Fining of Gravel by Selective Deposition	323		
		9.4.4	Effects of Climate Change on Grain-Size Trends	326		
	9.5	Linking	g Source to Sink: Provenance Tools	330		

Contents

viii

10	Sediment Routing Systems and Sequence Stratigraphy	335	
	10.1 Insights from Quaternary Studies	335	
	10.2 Orbitally Driven Signals in Stratigraphy	343	
	10.2.1 Effects of Sea Level Change	346	
	10.3 Analogue and Numerical Experiments of Sequence Architectures	349	
	10.3.1 Autostratigraphy Resulting from Internal Dynamics	351	
	10.4 Cycles and the Global Sea Level Chart	356	
	10.4.1 An Ordered Hierarchy?	356	
	References	364	
	Index		