

“DANA MACKENZIE
IS A VERY GOOD WRITER.
I WAS CONSTANTLY AMAZED
AT HIS ABILITY TO DESCRIBE
COMPLICATED MATHEMATICS
IN A FEW SENTENCES IN A WAY
THAT THE AVERAGE READER - CAN
UNDERSTAND. THIS IS A VERY
ENTERTAINING BOOK.”

David S. Richeson, author of *Euler's Gem: The Polyhedron Formula and the Birth of Topology*

In riveting narrative, Dana Mackenzie brings to life the history of mathematical development as it has unfolded in the lives and work of its greatest figures. Along the way from zero to infinity, he uncovers the beauty of an exceptional 24 equations that are surprising, consequential and universal. Discover:

- How mathematics got personal (and nasty) in 16th century Italy;
- How Newton and Leibniz unlocked the key to mastering infinity with the fundamental theorem of calculus;
- How Newton's Laws of Motion enable humans to do everything from building bridges to predicting the weather.
- How Fermat's Last Theorem was solved after 350 years.

£16.99

ISBN 978-1-911130-70-3

9 781911 130703

www.modern-books.com

modern books

introduction: the abacist versus the algorist

10

part one: equations of antiquity

16

1. Why we believe in arithmetic: the world's simplest equation
2. Resisting a new concept: the discovery of zero
3. The square of the hypotenuse: the Pythagorean theorem
4. The circle game: the discovery of π
5. From Zeno's paradoxes to the idea of infinity
6. A matter of leverage: laws of levers

20

26

30

40

46

52

part two: equations in the age of exploration

56

7. The stammerer's secret: Cardano's formula
8. Order in the heavens: Kepler's laws of planetary motion
9. Writing for eternity: Fermat's Last Theorem
10. An unexplored continent: the fundamental theorem of calculus
11. Of apples, legends ... and comets: Newton's laws
12. The great explorer: Euler's theorems

60

68

74

80

90

96

part three: equations in a promethean age	104
13. The new algebra: Hamilton and quaternions	108
14. Two shooting stars: group theory	114
15. The geometry of whales and ants: non-Euclidean geometry	122
16. In primes we trust: the prime number theorem	128
17. The idea of spectra: Fourier series	134
18. A god's-eye view of light: Maxwell's equations	142
part four: equations in our own time	150
19. The photoelectric effect: quanta and relativity	154
20. From a bad cigar to Westminster Abbey: Dirac's formula	164
21. The empire-builder: the Chern-Gauss-Bonnet equation	174
22. A little bit infinite: the Continuum Hypothesis	182
23. Theories of chaos: Lorenz equations	194
24. Taming the tiger: the Black-Scholes equation	204
conclusion: what of the future?	214
acknowledgments	218
bibliography	219
index	222