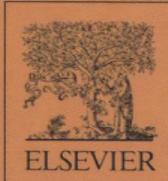


Fractional Calculus and Fractional Processes with Applications to Financial Economics

Theory and Application

A comprehensive, go-to reference that explains fractional calculus, fractional processes, and their applications to financial economics


Fractional Calculus and Fractional Processes with Applications to Financial Economics: Theory and Application presents the theory and application of fractional calculus and fractional processes to financial data. Fractional calculus dates back to 1695 when Gottfried Wilhelm Leibniz first suggested the possibility of fractional derivatives. Research on fractional calculus started in full earnest in the second half of the twentieth century. The fractional paradigm applies not only to calculus, but also to stochastic processes, used in many applications in financial economics such as modeling volatility, interest rates, and high-frequency data. The key features of fractional processes that make them interesting are long-range memory, path-dependence, non-Markovian properties, self-similarity, fractal paths, and anomalous diffusion behavior. In this book, the authors discuss how fractional calculus and fractional processes are used in financial modeling and financial economic theory. It provides a practical guide that can be useful for students, researchers, and quantitative asset managers and risk managers interested in applying fractional calculus and fractional processes to asset pricing, financial time-series analysis, stochastic volatility modeling, and portfolio optimization.

- Provides the necessary background for applying fractional calculus to financial economics
- Analyzes the application of fractional calculus and fractional processes from deterministic and stochastic perspectives

Hasan Fallahgoul – Post-Doctoral Researcher, Swiss Finance Institute, École Polytechnique Fédérale de Lausanne, Switzerland

Sergio Focardi – Professor of Finance and Director of the Master's course in Investment, Banking and Risk Management, Researcher at the Finance Group, ESILV EMLV of the Pole Universitaire De Vinci, Paris, France

Frank Fabozzi – Professor of Finance, EDHEC Business School and a Member of the EDHEC Risk Institute, USA

ACADEMIC PRESS

An imprint of Elsevier
elsevier.com

ISBN 978-0-12-804248-9

Part I Theory

1	Fractional calculus and fractional processes: an overview	1
1.1	Fractional calculus	5
1.2	Fractional processes	7
2	Fractional Calculus	12
2.1	Different definitions for fractional derivatives	12
2.1.1	Riemann-Liouville Fractional Derivative	13
2.1.2	Caputo Fractional Derivative	15
2.1.3	Grünwald-Letnikov Fractional Derivative	16
2.1.4	Fractional derivative based on the Fourier transform	17
2.2	Computation with Matlab	18
	Key points of the chapter	20
3	Fractional Brownian Motion	23
3.1	Definition	24
3.2	Long-Range Dependency	26
3.3	Self-Similarity	28
3.4	Existence of Arbitrage	30
	Key points of the chapter	32
4	Fractional Diffusion and Heavy Tail Distributions: Stable Distribution	33
4.1	Univariate Stable Distribution	33
4.1.1	Homotopy Perturbation Method	34
4.1.2	Adomian Decomposition Method	35
4.1.3	Variational Iteration Method	35
4.2	Multivariate Stable Distribution	36
4.2.1	Homotopy Perturbation Method	37
4.2.2	Adomian Decomposition Method	39
4.2.3	Variational Iteration Method	39
	Key points of the chapter	40

5	Fractional Diffusion and Heavy Tail Distributions: Geo-Stable Distribution	41
5.1	Univariate Geo-stable Distribution	41
5.1.1	Homotopy Perturbation Method	43
5.1.2	Adomian Decomposition Method	47
5.1.3	Variational Iteration Method	49
5.2	Multivariate Geo-stable Distribution	52
5.2.1	Homotopy Perturbation Method	52
5.2.2	Adomian Decomposition Method	53
5.2.3	Variational Iteration Method	54
	Key points of the chapter	54
Part II Applications		57
6	Fractional Partial Differential Equation and Option Pricing	59
6.1	Option Pricing and Brownian Motion	61
6.1.1	Stochastic Differential Equation	61
6.1.2	Partial Differential Equation	62
6.2	Option Pricing and the Lévy Process	65
6.2.1	Lévy Process	66
6.2.2	CGMY Process	67
6.2.3	Stochastic Differential Equation	67
6.2.4	Partial Integro-Differential Equation	72
	European Option	74
	6.2.5 Fractional Partial Differential Equation	75
	Characteristic Function	76
	European Option	77
	Key points of the chapter	79
7	Continuous-Time Random Walk and Fractional Calculus	81
7.1	Continuous-Time Random Walk	81
7.2	Fractional Calculus and Probability Density Function	83
7.2.1	Uncoupled	84
7.2.2	Coupled Case	85
7.3	Applications	86
7.3.1	Dynamics of the Asset Prices	86
	Key points of the chapter	89
8	Applications of Fractional Processes	91
8.1	Fractionally Integrated Time Series	92
8.2	Stock-Returns and Volatility Processes	93
8.3	Interest-Rate Processes	95
8.4	Order Arrival Processes	95
	Key points of the chapter	96
<i>References</i>		97