This book gives a presentation of stochastic epidemic models and their statistical analysis. It focuses on simple epidemic models making use of modern probabilistic and statistical methods such as coupling, diffusion approximation, random graphs, likelihood theory for counting processes, martingales, the EM-algorithm, and MCMC methods. These methods are presented in a general form keeping the technical level at a minimum and then applied to epidemic models. The reader will learn about the theory of epidemic models and be introduced to many useful general techniques from probability and statistics. The lecture notes require an undergraduate-level knowledge of probability and statistics and is well suited for a one-semester graduate course.

Håkan Andersson works as a risk analyst in a Swedish bank. Previously, he was a researcher in the Department of Mathematics at Stockholm University, Sweden; models of epidemic spread were his main research field. He has published several papers on epidemic modelling in applied probability journals.

Tom Britton is associate professor at the Department of Mathematics at Uppsala University, Sweden. He is the author of a dozen papers in epidemic modelling and its statistical analysis. He is also director of undergraduate studies at the Department of Mathematics at Uppsala University and secretary of the Swedish Statistical Association.

## Springer-Verlag

175 Fifth Avenue, New York, New York 10010, USA
Heidelberger Platz 3, 1000 Berlin 33, Germany
Tiergartenstrasse 17, D-69121 Heidelberg, Germany
13-3, Hongo 3-chome, Bunkyo-ku, Tokyo 113, Japan
Provença, 388, Ia planta, E-08025 Barcelona, Spain
Room 701 Mirror Tower, 61, Mody Road, Tsimshatsui, Kowloon, Hong Kong
8 Alexandra Road, Wimbledon, London SW19 7JZ, England
Via Podgora 4, I-20122 Milano, Italy
26, rue de Carmes, F-75005 Paris, France
# 04-01 Cencon I, 1 Tannery Road, Singapore 1334





| Part I: STOCHASTIC MODELLING                       | 1  |
|----------------------------------------------------|----|
| Chapter 1. Introduction                            | 3  |
| 1.1. Stochastic versus deterministic models        | 3  |
| 1.2. A simple epidemic model: The Reed-Frost model | 4  |
| 1.3. Stochastic epidemics in large communities     | 6  |
| 1.4. History of epidemic modelling                 | 7  |
| Exercises                                          | 9  |
| Chapter 2. The standard SIR epidemic model         | 11 |
| 2.1. Definition of the model                       | 11 |
| 2.2. The Sellke construction                       | 12 |
| 2.3. The Markovian case                            | 14 |
| 2.4. Exact results                                 | 15 |
| Exercises                                          | 18 |
| Chapter 3. Coupling methods                        | 19 |
| 3.1. First examples                                | 19 |
| 3.2. Definition of coupling                        | 22 |
| 3.3. Applications to epidemics                     | 22 |
| Exercises                                          | 26 |
| Chapter 4. The threshold limit theorem             | 27 |
| 4.1. The imbedded process                          | 27 |
| 4.2. Preliminary convergence results               | 28 |

| viii                                                          | Contents |
|---------------------------------------------------------------|----------|
| 43 The case $m/n \rightarrow u > 0$ or $n \rightarrow \infty$ | 90       |
| 4.3. The case $m_n/n \to \mu > 0$ as $n \to \infty$           | 30       |
| 4.4. The case $m_n = m$ for all $n$                           | 32       |
| 4.5. Duration of the Markovian SIR epidemic                   | 34       |
| Exercises                                                     | 36       |
| Chapter 5. Density dependent jump Markov processes            | 39       |
| 5.1. An example: A simple birth and death process             | 39       |
| 5.2. The general model                                        | 40       |
| 5.3. The Law of Large Numbers                                 | 41       |
| 5.4. The Central Limit Theorem                                | 43       |
| 5.5. Applications to epidemic models                          | 46       |
| Exercises                                                     | 48       |
| Chapter 6. Multitype epidemics                                | 51       |
| 6.1. The standard SIR multitype epidemic model                | 51       |
| 6.2. Large population limits                                  | 53       |
| 6.3. Household model                                          | 55       |
| 6.4. Comparing equal and varying susceptibility               | 56       |
| Exercises                                                     | 61       |
| Chapter 7. Epidemics and graphs                               | 63       |
| 7.1. Random graph interpretation                              | 64       |
| 7.2. Constant infectious period                               | 65       |
| 7.3. Epidemics and social networks                            | 66       |
| 7.4. The two-dimensional lattice                              | 70       |
| Exercises                                                     | 72       |

73

73

77

83

Chapter 8. Models for endemic diseases

8.1. The SIR model with demography

8.2. The SIS model

Exercises

| Part II: ESTIMATION                                         | 85  |
|-------------------------------------------------------------|-----|
| Chapter 9. Complete observation of the epidemic process     | 87  |
| 9.1. Martingales and log-likelihoods of counting processes  | 87  |
| 9.2. ML-estimation for the standard SIR epidemic            | 91  |
| Exercises                                                   | 94  |
| Chapter 10. Estimation in partially observed epidemics      | 99  |
| 10.1. Estimation based on martingale methods                | 99  |
| 10.2. Estimation based on the EM-algorithm                  | 103 |
| Exercises                                                   | 105 |
| Chapter 11. Markov Chain Monte Carlo methods                | 107 |
| 11.1. Description of the techniques                         | 107 |
| 11.2. Important examples                                    | 109 |
| 11.3. Practical implementation issues                       | 111 |
| 11.4. Bayesian inference for epidemics                      | 113 |
| Exercises                                                   | 114 |
| Chapter 12. Vaccination                                     | 117 |
| 12.1. Estimating vaccination policies based on one epidemic | 117 |
| 12.2. Estimating vaccination policies for endemic diseases  | 120 |
| 12.3. Estimation of vaccine efficacy                        | 123 |
| Exercises                                                   | 124 |
| References                                                  | 127 |
| Subject index                                               | 135 |