PREFACE

PREFACE	3
INTRODUCTION	5
1. VARIATIONAL PRINCIPLES AND PRINCIPLES OF VIRTUAL WORK	7
1.1 Introductory topics	7
1. 1. 1 The small displacement theory of elasticity	7
1. 1. 2 Extremum of functionals	9
1. 2 Principles of virtual work	11
1. 2. 1 Principle of virtual displacements	11
1. 2. 2 Principle of virtual forces - complementary virtual work	12
1. 3 Classical variational principles	16
1.4 Indirect application of variational principles	23
1. 4. 1 Elementary beam theory	23
1. 4. 2 Saint-Venant theory or free torsion of bars	28
1. 4. 3 The beam theory with the effect of transverse shear deformation	30
1. 4. 4 Solution of laminated beams	32
1.5 Direct application of variational principles	34
1.5.1 Summary of potential energy of deformation and complementary	
energy of stress	34
1. 5. 2 Ritz method	36
1. 5. 3 Galerkin-Bubnov method	38
2. STABILITY OF BEAMS	46
2.1 Geometric method	47
2. 1. 1 Other cases of support	50
2. 1. 2 The length of buckling	55
2. 1. 3 The buckling in standards	56
2.2 Energetic methods	57
2. 2. 1 Energy criterion of stability by Washizu	57
2. 2. 2 Geometrical explanation of energetic method	59
2.2.3 Variational solution	61

	2. 3 Buckling of another selected structures2. 3. 1 Stability of discrete systems	68 68
	2. 3. 2 Combination of compression and bending	71
3.	TWO-DIMENSIONAL PROBLEMS	75
	3.1 Plane stress state	76
	3. 2 Plane strain state	77
	3.3 Generalized plane strain for axisymmetric problem	78
	3. 4 Analysis of the stress behavior at a point of a 2D structure	80
	3.5 Theory of plates	86
	3. 5. 1 Kirchhoff hypothesis	86
	3. 5. 2 Stretching and bending of a plate	89
~	3. 5. 3 Principle of minimum potential energy and its transformation for the	
	stretching of a plate	94
	3. 5. 4 Principle of minimum potential energy and its transformation for the	
	bending of a plate	95
	3. 5. 5 Bending of a thin plate including the effect of transverse shear	
	deformation	96
	3. 6 Pure bending of Kirchhoff plates	102
	3. 6. 1 Boundary conditions in practical examples	103
	3. 6. 2 Problems of a plate in polar coordinates	108
	3. 6. 3 Axisymmetric problem	110
	3. 6. 4 Fourier series	112
	3. 6. 5 Folded plate problem	115
	3. 6. 6 Finite difference method	116
	3. 6. 7 Energetic methods	125
	3.7 Stretching of plates	129
	3. 7. 1 Finite difference method	133
	3.7.2 Polar coordinates	138
	3.7.3 Stress distribution in an annular plate with cylindrical anisotropy	139
	3. 7. 4 Stress distribution in a composite curvilinear anisotropic ring	141
	3.7.5 Fourier method	142
	3. 7. 6 Energetic methods	146
	REFERENCES	149