Statistics

"In a very personal writing style, Hodges explores what we do and do not understand about mixed linear models. ... By also discussing mysterious, inconvenient, or plainly wrong results, we simply gain more insight and understanding. This works for me; I have never gained so much (hard to get) insight in so short a time from any other book I have read. I highly recommend it!"
-Håvard Rue, Norwegian University of Science and Technology
"This book is a masterpiece, destined to become a classic. ... There is not presently a unified theory, like that for linear regression, to explain how, why, and when our numerical routines give results that should be questioned, or at least examined further. Even so, this book does the best job I have seen of explaining what can go wrong and what the state of the art is. The subject is important; the writing is excellent; and the examples are compelling. I am excited by the prospect of teaching a course from this book. Its clarity of thought and presentation are exemplary. I recommend it for anyone who fits complicated models."
-Michael Lavine, University of Massachusetts Amherst
Richly Parameterized Linear Models: Additive, Time Series, and Spatial
Models Using Random Effects takes a first step in developing a full theory of richly parameterized models, which would allow statisticians to better understand their analysis results. The author examines what is known and unknown about mixed linear models and identifies research opportunities.

Features

- Develops a unified theory for a large class of popular models
- Explains how to overcome some common difficulties in using these models to analyze data
- Covers both Bayesian and non-Bayesian methods
- Includes detailed analyses of many real datasets, with the data and other materials available on the author's website
- Provides standard exercises and open questions at the end of each chapter
List of Examples
List of Figures xvii
List of Tables xxvii
Preface xxxi
Acknowledgments xxxvii
I Mixed Linear Models: Syntax, Theory, and Methods 1
1 An Opinionated Survey of Methods for Mixed Linear Models 5
1.1 Mixed Linear Models in the Standard Formulation 5
1.2 Conventional Analysis of the Mixed Linear Model 16
1.2.1 Overview 16
1.2.2 Mean Structure Estimates 17
1.2.3 Estimating ϕ, the Unknowns in \mathbf{G} and \mathbf{R} 19
1.2.3.1 Maximizing the, or Rather a, Likelihood 19
1.2.3.2 Maximizing the Restricted (Residual) Likelihood 20
1.2.4 Other Machinery of Conventional Statistical Inference 21
1.2.4.1 Standard Errors for Fixed and Random Effects 22
1.2.4.2 Testing and Intervals for Fixed and Random Effects 23
1.2.4.3 Testing and Intervals for ϕ 24
1.3 Bayesian Analysis of the Mixed Linear Model 26
1.3.1 A Very Brief Review of Bayesian Analysis in General 26
1.3.2 Bayesian Analysis of Mixed Linear Models 29
1.3.2.1 Tests and Intervals for Unknowns 29
1.3.2.2 Some Comments on the Bayesian Analysis 31
1.3.2.3 Prior Distributions for Variances 33
1.3.2.4 Prior Distributions for Covariance Matrices 35
1.3.3 Computing for Bayesian Analyses 37
1.4 Conventional and Bayesian Approaches Compared 40
1.4.1 Advantages and Disadvantages of the Two Approaches 40
1.4.2 Conventional and Bayesian Analyses for the Viral-Structure Example 43
1.5 A Few Words about Computing 46
Exercises 48
2 Two More Tools: Alternative Formulation, Measures of Complexity 51
2.1 Alternative Formulation: The "Constraint-Case" Formulation 51
2.1.1 The Constraint-Case Formulation 51
2.1.2 A Brief History of the Constraint-Case Formulation 55
2.2 Measuring the Complexity of a Mixed Linear Model Fit 55
2.2.1 DF in the Whole Fit 56
2.2.2 Partitioning a Fit's DF into Components 58
2.2.2.1 Notation, Motivation for the Partition of DF 58
2.2.2.2 Partitioning DF 59
2.2.2.3 Properties of the Definition 59
2.2.2.4 Example of Partitioning DF 60
2.2.3 Uses of DF for Mixed Linear Models 63
2.2.3.1 Using DF to Specify F-Tests 63
2.2.3.2 Using DF to Describe Model Size, for Model- Selection Criteria 65
2.2.3.3 Prior Distributions on DF 65
2.2.4 DF Compared to p_{D} of Spiegelhalter et al. (2002) 68
2.2.5 Some Intuition for Fractional Degrees of Freedom 70
2.2.5.1 Using the Constraint-Case Formulation 70
2.2.5.2 Using the Mixed Model Formulation 72
Exercises 73
II Richly Parameterized Models as Mixed Linear Models 75
3 Penalized Splines as Mixed Linear Models 79
3.1 Penalized Splines: Basis, Knots, and Penalty 79
3.2 More on Basis, Knots, and Penalty 83
3.2.1 A Few More Bases 83
3.2.2 A Bit More on Penalty Functions 85
3.2.3 Brief Comments on Some Operational Matters 87
3.3 Mixed Linear Model Representation 88
3.3.1 Applying the Mixed-Linear-Model Approach 90
3.3.2 Brief Comments on Other Aspects of the Mixed-Linear- Model Analysis 98
Exercises 99
4 Additive Models and Models with Interactions 101
4.1 Additive Models as Mixed Linear Models 102
4.1.1 The Pig Jawbone Example 102
4.1.2 Additive Models Defined 103
4.1.3 Additive Models Fit to the Pig Jawbone Data 104
4.2 Models with Interactions 109
4.2.1 Categorical-by-Continuous Interactions 110
4.2.2 Categorical-by-Categorical Interactions (Smoothed ANOVA) 114
4.2.3 Smoothed ANOVA, Balanced Design with a Single Error Term 115
4.2.3.1 Notation and Other Machinery 116
4.2.3.2 DF in Effects, Prior Distributions, SANOVA Table 119
4.2.3.3 SANOVA Applied to the Denture-Liner Example 121
4.2.4 Smoothed ANOVA for More General Designs 126
Exercises 126
5 Spatial Models as Mixed Linear Models 129
5.1 Geostatistical Models 130
5.2 Models for Areal Data 132
5.2.1 Common Areal Models: SAR, CAR, and ICAR 133
5.2.2 More on the ICAR Model/Prior 136
5.2.3 Smoothed ANOVA with Spatial Smoothing 141
5.3 Two-Dimensional Penalized Splines 144
5.3.1 Tensor-Product Basis 144
5.3.2 Radial Basis 145
5.3.3 A Comment on Tensor-Product vs. Radial Basis 149
Exercises 149
6 Time-Series Models as Mixed Linear Models 151
6.1 Example: Linear Growth Model 151
6.2 Dynamic Linear Models in Some Generality 154
6.3 Example of a Multi-component DLM 156
Exercises 160
7 Two Other Syntaxes for Richly Parameterized Models 163
7.1 Schematic Comparison of the Syntaxes 163
7.2 Gaussian Markov Random Fields (Rue \& Held 2005) 164
7.3 Likelihood Inference for Models with Unobservables (Lee et al. 2006) 168
Exercises 171
III From Linear Models to Richly Parameterized Models: Mean Structure 173
8 Adapting Diagnostics from Linear Models 177
8.1 Preliminaries 178
8.2 Added-Variable Plots 181
8.3 Transforming Variables 183
8.4 Case Influence 184
8.5 Residuals 192
Exercises 197
9 Puzzles from Analyzing Real Datasets 201
9.1 Four Puzzles 201
9.1.1 Introducing Spatially Correlated Errors Makes a Fixed Effect Disappear 201
9.1.2 Adding a Clustering Effect Changes One Fixed Effect but Not Another 203
9.1.3 Differential Shrinkage of Effects with Roughly Equal Estimates and Standard Errors 205
9.1.4 Two Random Effects Obliterated by Adding an Apparently Unrelated Random Effect 206
9.2 Overview of the Next Three Chapters 210
Exercises 210
10 A Random Effect Competing with a Fixed Effect 211
10.1 Slovenia Data: Spatial Confounding 211
10.1.1 The Mechanics of Spatial Confounding 211
10.1.1.1 The Model, Re-written as a Mixed Linear Model 211
10.1.1.2 Spatial Confounding Explained in Linear-Model Terms 213
10.1.1.3 Spatial Confounding Explained in a More Spatial- Statistics Style 214
10.1.2 Avoiding Spatial Confounding: Restricted Spatial Regres- sion 215
10.1.3 Spatial Confounding Is Not an Artifact of the ICAR Model 216
10.1.4 Five Interpretations, with Implications for Practice 217
10.1.4.1 S Is a New-Style Random Effect, a Formal Device to Implement a Smoother 218
10.1.4.2 S Is an Old-Style Random Effect 221
10.1.5 Concluding Thoughts on Spatial Confounding 223
10.2 Kids and Crowns: Informative Cluster Size 224
10.2.1 Mechanics of Informative Cluster Size 224
10.2.2 Illustrative Examples 230
10.2.3 Some Simple Analyses of the Kids-and-Crowns Data 233
Exercises 235
11 Differential Shrinkage 237
11.1 The Simplified Model and an Overview of the Results 237
11.1.1 The Simplified Model 238
11.1.2 Overview of the Results 239
11.2 Details of Derivations 240
11.2.1 Centered Predictors and Outcome and No Intercept 240
11.2.1.1 Expressions for the Inferential Summaries 240
11.2.1.2 Proofs of the Claims 242
11.2.2 Centered Predictors with an Intercept 245
11.2.3 Predictors Not Centered 246
11.3 Conclusion: What Might Cause Differential Shrinkage? 247
Exercises 248
12 Competition between Random Effects 251
12.1 Collinearity between Random Effects in Three Simpler Models 252
12.1.1 Model with Clustering and Heterogeneity 252
12.1.1.1 Theory 252
12.1.1.2 Illustrations Using Simulated Data 255
12.1.2 Two Crossed Random Effects 262
12.1.2.1 Theory 262
12.1.2.2 Illustrations Using Simulated Data 264
12.1.3 Three Predictors, Two with Shrunk Coefficients 267
12.2 Testing Hypotheses on the Optical-Imaging Data and DLM Models 270
12.2.1 The Hypothesis about Collinearity of the Design Matrices 271
12.2.2 The Hypothesis about Lack of Fit 275
12.3 Discussion 282
Exercises 282
13 Random Effects Old and New 285
13.1 Old-Style Random Effects 285
13.2 New-Style Random Effects 286
13.2.1 There Is No Population 287
13.2.2 The Effect's Levels Are the Whole Population 290
13.2.3 A Sample Has Been Drawn, but 292
13.2.4 Comments on New-Style Random Effects 293
13.3 Practical Consequences 294
13.3.1 Inference and Prediction 294
13.3.1.1 Inference 294
13.3.1.2 Prediction 297
13.3.2 Interpretation of Analytical Artifacts 298
13.3.3 Simulation Experiments to Evaluate Statistical Methods 298
13.4 Conclusion 302
Exercises 302
IV Beyond Linear Models: Variance Structure 303
14 Mysterious, Inconvenient, or Wrong Results from Real Datasets 307
14.1 Periodontal Data and the ICAR Model 307
14.2 Periodontal Data and the ICAR with Two Classes of Neighbor Pairs 309
14.3 Two Very Different Smooths of the Same Data 312
14.4 Misleading Zero Variance Estimates 312
14.5 Multiple Maxima in Posteriors and Restricted Likelihoods 315
14.6 Overview of the Remaining Chapters 316
Exercises 318
15 Re-expressing the Restricted Likelihood: Two-Variance Models 319
15.1 The Re-expression 319
15.2 Examples 323
15.2.1 Balanced One-Way Random Effect Model 324
15.2.2 Penalized Spline 324
15.2.3 ICAR Model; Spatial Confounding Revisited 329
15.2.3.1 Attachment-Loss Data: Simple ICAR Model 329
15.2.3.2 Spatial Confounding: ICAR with Predictors 334
15.2.4 Dynamic Linear Model with One Quasi-Cyclic Component 338
15.3 A Tentative Collection of Tools 343
Exercises 345
16 Exploring the Restricted Likelihood for Two-Variance Models 347
16.1 Which \hat{v}_{j} Tell Us about Which Variance? 347
16.1.1 Some Heuristics 347
16.1.2 Case-Deletion Using the Gamma GLM Interpretation 348
16.1.3 Modified Restricted Likelihood 354
16.1.4 Summary and an Important Corollary 358
16.2 Two Mysteries Explained 358
Exercises 365
17 Extending the Re-expressed Restricted Likelihood 367
17.1 Restricted Likelihoods That Can and Can't Be Re-expressed 367
17.1.1 Two Restricted Likelihoods That Can't Be Re-expressed 368
17.1.2 Balanced Designs 370
17.1.2.1 Derivations Regarding Balance 373
17.1.3 Gaussian Processes Using the Spectral Approximation 376
17.1.4 Separable Models 380
17.1.5 Miscellaneous Other Models 381
17.2 Expedients for Restricted Likelihoods That Can't Be Re-expressed 382
17.2.1 Expedient 1: Ignore the Error Variance 382
17.2.2 Expedient 2: Ignore the Non-zero Off-Diagonals 385
Exercises 395
Contents xiii
18 Zero Variance Estimates 397
18.1 Some Observations about Zero Variance Estimates 397
18.1.1 Balanced One-Way Random Effects Model 397
18.1.2 Balanced ANOVA for the Nerve-Density Example 398
18.2 Some Thoughts about Tools 401
Exercises 403
19 Multiple Maxima in the Restricted Likelihood and Posterior 405
19.1 Restricted Likelihoods with Multiple Local Maxima 405
19.2 Posteriors with Multiple Modes 406
19.2.1 Balanced One-Way Random Effect Model 407
19.2.2 Two-Level Model: The HMO Data (Example 9) Revisited 409
Exercises 411
References 413
Author Index 425
Subject Index 429

