Statistics

"In a very personal writing style, Hodges explores what we do and do not understand about mixed linear models. ... By also discussing mysterious, inconvenient, or plainly wrong results, we simply gain more insight and understanding. This works for me; I have never gained so much (hard to get) insight in so short a time from any other book I have read. I highly recommend it!"

-Håvard Rue, Norwegian University of Science and Technology

"This book is a masterpiece, destined to become a classic. ... There is not presently a unified theory, like that for linear regression, to explain how, why, and when our numerical routines give results that should be questioned, or at least examined further. Even so, this book does the best job I have seen of explaining what can go wrong and what the state of the art is. The subject is important; the writing is excellent; and the examples are compelling. I am excited by the prospect of teaching a course from this book. Its clarity of thought and presentation are exemplary. I recommend it for anyone who fits complicated models."

-Michael Lavine, University of Massachusetts Amherst

Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects takes a first step in developing a full theory of richly parameterized models, which would allow statisticians to better understand their analysis results. The author examines what is known and unknown about mixed linear models and identifies research opportunities.

Features

- Develops a unified theory for a large class of popular models
- Explains how to overcome some common difficulties in using these models to analyze data
- Covers both Bayesian and non-Bayesian methods
- Includes detailed analyses of many real datasets, with the data and other materials available on the author's website
- Provides standard exercises and open questions at the end of each chapter

CRC

CRC Press Taylor & Francis Group an informa business www.crcpress.com 6000 Broken Sound Parkway, NW Suite 300, Boca Raton, FL 33487 711 Third Avenue New York, NY 10017 2 Park Square, Milton Park Abingdon, Oxon OX14 4RN, UK

Li	st of l	Example	es	XV
Li	st of l	Figures		xvii
Li	st of 7	Fables		xxvii
Pr	eface	in the second	2.2.2.4 Example of Parking DP	xxxi
Ac	know	vledgme	ents	xxxvii
Ι	Mi	xed Li	near Models: Syntax, Theory, and Methods	1
1	An	Opinion	ated Survey of Methods for Mixed Linear Models	5
	1.1	Mixed	Linear Models in the Standard Formulation	5
	1.2	Conver	ntional Analysis of the Mixed Linear Model	16
		1.2.1	Overview	16
		1.2.2	Mean Structure Estimates	17
		1.2.3	Estimating ϕ , the Unknowns in G and R	19
			1.2.3.1 Maximizing the, or Rather a, Likelihood	19
			1.2.3.2 Maximizing the Restricted (Residual) Likelihood	_20
		1.2.4	Other Machinery of Conventional Statistical Inference	21
			1.2.4.1 Standard Errors for Fixed and Random Effects1.2.4.2 Testing and Intervals for Fixed and Random	22
			Effects	23
			1.2.4.3 Testing and Intervals for ϕ	24
	1.3	Bayesi	an Analysis of the Mixed Linear Model	26
		1.3.1	A Very Brief Review of Bayesian Analysis in General	26
		1.3.2	Bayesian Analysis of Mixed Linear Models	29
			1.3.2.1 Tests and Intervals for Unknowns	29
			1.3.2.2 Some Comments on the Bayesian Analysis	31
			1.3.2.3 Prior Distributions for Variances	33
			1.3.2.4 Prior Distributions for Covariance Matrices	35
		1.3.3	Computing for Bayesian Analyses	37
	1.4	Conver	ntional and Bayesian Approaches Compared	40
		1.4.1	Advantages and Disadvantages of the Two Approaches	40

0		4
(on	ren	ГC
COIL	ω_{11}	10

		1.4.2	Conventional and Bayesian Analyses for the Viral-Structure	43
	15	A Few	Words about Computing	46
	Exer	cises	Words about Computing	48
2	Two	More 7	Sools: Alternative Formulation, Measures of Complexity	51
	2.1	Alterna	ative Formulation: The "Constraint-Case" Formulation	51
		2.1.1	The Constraint-Case Formulation	51
		2.1.2	A Brief History of the Constraint-Case Formulation	55
	2.2	Measu	ring the Complexity of a Mixed Linear Model Fit	55
		2.2.1	DF in the Whole Fit	56
		2.2.2	Partitioning a Fit's DF into Components	58
			2.2.2.1 Notation, Motivation for the Partition of DF	58
			2.2.2.2 Partitioning DF	59
			2.2.2.3 Properties of the Definition	59
			2.2.2.4 Example of Partitioning DF	60
		2.2.3	Uses of DF for Mixed Linear Models	63
			2.2.3.1 Using DF to Specify <i>F</i> -Tests	63
			2.2.3.2 Using DF to Describe Model Size, for Model-	
			Selection Criteria	65
			2.2.3.3 Prior Distributions on DF	65
		2.2.4	DF Compared to p_D of Spiegelhalter et al. (2002)	68
		2.2.5	Some Intuition for Fractional Degrees of Freedom	70
			2.2.5.1 Using the Constraint-Case Formulation	70
			2.2.5.2 Using the Mixed Model Formulation	72
	Exer	rcises		73
П	Ri	ichly P	arameterized Models as Mixed Linear Models	75
3	Pen	alized S	plines as Mixed Linear Models	79
	3.1	Penali	zed Splines: Basis, Knots, and Penalty	79
	3.2	More	on Basis, Knots, and Penalty	83
		3.2.1	A Few More Bases	83
		3.2.2	A Bit More on Penalty Functions	85
		3.2.3	Brief Comments on Some Operational Matters	87
	3.3	Mixed	Linear Model Representation	88
		3.3.1	Applying the Mixed-Linear-Model Approach	90
		3.3.2	Brief Comments on Other Aspects of the Mixed-Linear-	
			Model Analysis	98
	Exe	rcises		99

CO	ntents				IX
4	Addi	itive Mo	odels and N	Models with Interactions	101
73	4.1	Additiv	ve Models a	as Mixed Linear Models	102
		4.1.1	The Pig Ja	awbone Example	102
		4.1.2	Additive N	Models Defined	103
		4.1.3	Additive I	Models Fit to the Pig Jawbone Data	104
	4.2	Model	s with Inter	actions	109
		4.2.1	Categoric	al-by-Continuous Interactions	110
		4.2.2	Categoric ANOVA)	al-by-Categorical Interactions (Smoothed	114
		4.2.3	Smoothed	ANOVA, Balanced Design with a Single Error	
			Term	Might Cause Differential Shrinkare?	115
			4.2.3.1	Notation and Other Machinery	116
			4.2.3.2	DF in Effects, Prior Distributions, SANOVA Table	119
			4.2.3.3	SANOVA Applied to the Denture-Liner Example	121
		4.2.4	Smoothed	ANOVA for More General Designs	126
	Exer	cises		A support And a capacity and the Advance of the	126
5	Snat	ial Mo	lels as Mix	ed Linear Models	129
-	5.1	Geosta	tistical Mo	dels	130
	5.2	Model	s for Areal	Data	132
	0.12	5.2.1	Common	Areal Models: SAR, CAR, and ICAR	133
		5.2.2	More on t	the ICAR Model/Prior	136
		5.2.3	Smoothed	d ANOVA with Spatial Smoothing	141
	5.3	Two-D	imensional	l Penalized Splines	144
		5.3.1	Tensor-Pr	roduct Basis	144
		5.3.2	Radial Ba	asis	145
		5.3.3	A Comm	ent on Tensor-Product vs. Radial Basis	149
	Exer	cises			149
6	Tim	e-Serie	s Models a	s Mixed Linear Models	151
	6.1	Exam	ole: Linear	Growth Model	151
	6.2	Dynar	nic Linear I	Models in Some Generality	154
	6.3	Exam	ole of a Mu	lti-component DLM	156
	Exer	rcises		His Dien Drawn, but	160
7	Two	Other	Svntaxes f	for Richly Parameterized Models	163
	7.1	Schen	natic Comp	arison of the Syntaxes	163
	7.2	Gauss	ian Markov	Random Fields (Rue & Held 2005)	164
	7.3	Likeli	hood Infere	ence for Models with Unobservables (Lee et al.	
		2006)		10 k.F. Concluding Encoding on Statistic Confina	168
	Exe	rcises			171

Co	nt	er	its

III	F	rom I	linear M	odels to Richly Parameterized Models:	
M	ean	Struct	ure	Additive Models as Mined Commission	173
8	Ada	pting D	agnostics	from Linear Models	177
	8.1	Prelim	inaries		178
	8.2	Addec	-Variable P	Plots	181
	8.3	Transf	orming Var	iables	101
	8.4	Case I	nfluence		10.
	8.5	Residu	als		104
	Exer	rcises			192
9	Puz	zles from	n Analyzin	ng Real Datasets	201
	9.1	Four P	uzzles		201
		9.1.1	Introducir Effect Dis	ng Spatially Correlated Errors Makes a Fixed	201
		9.1.2	Adding a Not Anoth	Clustering Effect Changes One Fixed Effect but	201
		9.1.3	Differenti Estimates	al Shrinkage of Effects with Roughly Equal and Standard Errors	205
		9.1.4	Two Rand	lom Effects Obliterated by Adding an Apparently Random Effect	205
	92	Overvi	ew of the N	Text Three Chapters	206
	Exer	cises	ew of the P	text Three Chapters	210
10	A R	andom	Effect Com	peting with a Fixed Effect	211
	10.1	Sloven	ia Data: Sp	atial Confounding	211
		10.1.1	The Mech	anics of Spatial Confounding	211
			10.1.1.1 10.1.1.2	The Model, Re-written as a Mixed Linear Model Spatial Confounding Explained in Linear-Model	211
			10.1.1.3	Terms Spatial Confounding Explained in a More Spatial-	213
		10.1.2	Avoiding	Statistics Style Spatial Confounding: Restricted Spatial Regres-	214
			sion	and less	215
		10.1.3	Spatial Co	onfounding Is Not an Artifact of the ICAR Model	216
		10.1.4	Five Interp	pretations, with Implications for Practice	217
			10.1.4.1	S Is a New-Style Random Effect, a Formal Device to Implement a Smoother	218
			10142	S Is an Old-Style Random Effect	210
		10.1.5	Concludin	g Thoughts on Spatial Confounding	221
	10.2	Kids an	d Crowns.	Informative Cluster Size	223
		10.2.1	Mechanics	s of Informative Cluster Size	224
		10.2.2	Illustrative	Examples	224
		10.2.3	Some Sim	ple Analyses of the Kids-and-Crowns Data	230
	Exer	cises	~~~~	i source of the files and crowns Data	235

X

Contents		xi
11 Diff	ential Shrinkage	237
11.1	The Simplified Model and an Overview of the Results	237
	1.1.1 The Simplified Model	238
	1.1.2 Overview of the Results	239
11.2	Details of Derivations	240
	1.2.1 Centered Predictors and Outcome and No Intercept	240
	11.2.1.1 Expressions for the Inferential Summaries	240
	11.2.1.2 Proofs of the Claims	242
	1.2.2 Centered Predictors with an Intercept	245
	1.2.3 Predictors Not Centered	246
11.3	Conclusion: What Might Cause Differential Shrinkage?	247
Exer	ses	248
12 Con	atition between Random Effects	251
12 001	Collinearity between Random Effects in Three Simpler Models	251
12.1	2.1.1 Model with Clustering and Heterogeneity	252
	12.1.1 Theory	252
	12.1.1.1 Illustrations Using Simulated Data	252
	212 Two Crossed Random Effects	255
	12.1.2 Two crossed Random Enects	262
	12.1.2.1 Illustrations Using Simulated Data	264
	2.1.3 Three Predictors Two with Shrunk Coefficients	267
12.2	Testing Hypotheses on the Optical-Imaging Data and DLM Mode	ls 270
347	2.2.1 The Hypothesis about Collinearity of the Design Matrices	271
	2.2.2 The Hypothesis about Lack of Fit	275
12.3	Discussion	282
Exer	ses	282
	Tooling Readered Likelihoot	
13 Ran	om Effects Old and New	285
13.1	DId-Style Random Effects	285
13.2	New-Style Random Effects	286
	3.2.1 There Is No Population	287
	3.2.2 The Effect's Levels Are the Whole Population	290
	3.2.3 A Sample Has Been Drawn, but	292
12.2	3.2.4 Comments on New-Style Random Effects	293
13.3	ractical Consequences	294
	3.3.1 Interence and Prediction	294
	13.3.1.1 Inference	294
	13.3.1.2 Prediction	297
	3.3.2 Interpretation of Analytical Artifacts	298
10.4	3.3.3 Simulation Experiments to Evaluate Statistical Methods	298
13.4	Lonciusion	302
Exer	ses	302

£.

		Co	ontents
IV	Beyon	d Linear Models: Variance Structure	303
14	Mysteriou	s, Inconvenient, or Wrong Results from Real Datasets	307
	14.1 Perio	dontal Data and the ICAR Model	307
	14.2 Perio	dontal Data and the ICAR with Two Classes of Neighbor Pairs	309
	14.3 Two	Very Different Smooths of the Same Data	312
	14.4 Misle	ading Zero Variance Estimates	312
	14.5 Mult	ple Maxima in Posteriors and Restricted Likelihoods	315
	14.6 Over	view of the Remaining Chapters	316
	Exercises	* 11.2.1 Predictive No. Company	318
15	Re-express	sing the Restricted Likelihood: Two-Variance Models	319
	15.1 The I	Re-expression	319
	15.2 Exam	iples	323
	15.2.	1 Balanced One-Way Random Effect Model	324
	15.2.	2 Penalized Spline	324
	15.2.	3 ICAR Model; Spatial Confounding Revisited	329
		15.2.3.1 Attachment-Loss Data: Simple ICAR Model	329
		15.2.3.2 Spatial Confounding: ICAR with Predictors	334
	15.2.4	Dynamic Linear Model with One Quasi-Cyclic Component	338
	15.3 A Ter	itative Collection of Tools	343
	Exercises		345
16	Exploring	the Restricted Likelihood for Two-Variance Models	347
	16.1 Which	h \hat{v}_j Tell Us about Which Variance?	347
	16.1.1	Some Heuristics	347
	16.1.2	2 Case-Deletion Using the Gamma GLM Interpretation	348
	16.1.3	Modified Restricted Likelihood	354
	16.1.4	Summary and an Important Corollary	358
	16.2 Two I	Mysteries Explained	358
	Exercises		365
17	Extending	the Re-expressed Restricted Likelihood	367
	17.1 Restri	cted Likelihoods That Can and Can't Be Re-expressed	367
	17.1.1	Two Restricted Likelihoods That Can't Be Re-expressed	368
	17.1.2	Balanced Designs	370
		17.1.2.1 Derivations Regarding Balance	373
	17.1.3	Gaussian Processes Using the Spectral Approximation	376
	17.1.4	Separable Models	380
	17.1.5	Miscellaneous Other Models	381
	17.2 Exped	ients for Restricted Likelihoods That Can't Be Re-expressed	382
	17.2.1	Expedient 1: Ignore the Error Variance	382
SOE	17.2.2	Expedient 2: Ignore the Non-zero Off-Diagonals	385
]	Exercises	Same Suble Association of the Self Contracts Date	395

xii

Conte	nts	xiii
 18 Ze 18 18 18 Ex 	 Yariance Estimates 1 Some Observations about Zero Variance Estimates 18.1.1 Balanced One-Way Random Effects Model 18.1.2 Balanced ANOVA for the Nerve-Density Example 2 Some Thoughts about Tools 	397 397 397 398 401 403
19 M 19 19 Ex	 ultiple Maxima in the Restricted Likelihood and Posterior .1 Restricted Likelihoods with Multiple Local Maxima .2 Posteriors with Multiple Modes 19.2.1 Balanced One-Way Random Effect Model 19.2.2 Two-Level Model: The HMO Data (Example 9) Revisited 	405 405 406 407 409 411
Refere	ences	413
Autho	or Index	425
Subje	ct Index	429