Contents

	ributo		XI
List o	f Figu	ıres	xiii
List o	f Tab	les	xix
Prefa	ce		xxi
Acro	nyms		XXV
1.	Ove	erview of Data-Driven Solutions	1
	Yink	nai Wang and Ziqiang Zeng	
			1
	1.1	General Background	1
		1.1.1 Government Investment	2
		1.1.2 Academic Community Research Trend	3
		1.1.3 Transportation Industry Involvement	3
	1.2	Data-Driven Innovation in Transportation Science	4
	1.3	Methodologies for Data-Driven Transportation Science	5
	1.4	Applications in Data-Driven Transportation Science	6
	1.5	Overview and Roadmap	7
	Refe	erences	9
2.	Dat	ta-Driven Energy Efficient Driving Control in	
4.	Col	nnected Vehicle Environment	11
		wei Qi, Guoyuan Wu, Kanok Boriboonsomsin and	
	Mat	thew J. Barth	
	2.1	Introduction	13
	2.2	Background and State of the Art	14
		2.2.1 PHEV Modeling	14
		2.2.2 Operation Mode and SOC Profile	14
		2.2.3 EMS for PHEVs	15
		2.2.4 PHEVs' SOC Control	16
	2.3	Problem Formulation	17
		2.3.1 Data-Driven On-Line EMS Framework for PHEVs	17
		2.3.2 Optimal Power-Split Control Formulation	19
	2.4	Data-Driven Evolutionary Algorithm (EA) Based	
		Self-Adaptive On-Line Optimization	20
		2.4.1 Optimality and Complexity	23
		Zim Spanians, and Somplemy	

		2.4.2	SOC Control Strategies	23
		2.4.3		25
		2.4.4	Synthesized Trip Information	27
		2.4.5		28
		2.4.6	Real-Time Performance Analysis and Parameter Tuning	28
		2.4.7	On-Line Optimization Performance Comparison	29
		2.4.8	Analysis of Trip Duration	31
		2.4.9	Performance With Charging Opportunity	33
	2.5		Driven Reinforcement Learning-Based Real-Time EMS	34
		2.5.1	Introduction	34
		2.5.2	Dynamic Programming	36
		2.5.3	Approximate Dynamic Programming and Reinforcement	30
			Learning	37
		2.5.4	Reinforcement Learning-Based EMS	38
		2.5.5	Action and Environmental States	39
		2.5.6	Reward Initialization (With Optimal Results From	39
			Simulation)	40
		2.5.7	Q-Value Update and Action Selection	
		2.5.8	Validation and Testing	41
		2.5.9	Model Without Charging Opportunity (Trip Level)	42
			Model With Charging Opportunity (Tour Level)	42
	2.6	Concl	usions	44
	Ref	erences		47 47
				47
3.	Ma	chine	Learning and Computer Vision-Enabled	
	Tra	ffic Se	nsing Data Analysis and Quality Enhancement	
	C···	h.: 71	Data Analysis and Quality Ennancement	51
	Gue	onui Zna	ang and Yinhai Wang	
	3.1	Introd	uction	51
		3.1.1	Significance of Vehicle Classification Volumes	51
		3.1.2	Research Motivation	52
		3.1.3	Research Objectives	53
	3.2	State o	of the Art and Practice	53
		3.2.1	Single-Loop Vehicle Length Estimation and	33
			Machine Learning Application	53
		3.2.2	Computer Vision-Based Traffic Detection	54
	3.3	Metho	dology	
			Machine Learning Approach for Vehicle	55
			Classification Volume Estimation	
		3.3.2	Computer Vision Algorithms to Measure Vehicle	55
			Classification Volumes	50
	3.4		nental Tests and Discussions	59
		3.4.1	ANN Approach Performance Evaluation	66
		3.4.2	VVDC System Performance Evaluation	66
	3.5	Conclu	sions	71
		rences		76

	iability	
Shu	Yang a	nd Yao-Jan Wu
4.1	Introd	uction
	4.1.1	Significance of Travel Time Reliability
	4.1.2	Definition of TTR
	4.1.3	Motivation and Research Questions
	4.1.4	Chapter Organization
4.2	State	of the Art and the Practice
	4.2.1	Probability Distribution Family Selection for Travel Time Distribution
	4.2.2	Data Size Selection in Estimating TTR
	4.2.3	Freeway TTR Measures
4.3	Estima	ating Freeway TTR and Its Accuracy
		TTR Measures
	4.3.2	Insensitivity of Probability Distribution Family Selection
	4.3.3	Introduction to the Bootstrap
	4.3.4	Accuracy of TTR Measures
	4.3.5	Optimal Quantity of Travel Time
4.4	From	Segment-Based TTR to OD-Based TTR
	4.4.1	Significance of OD-Based TTR
	4.4.2	OD-Based TTR Measurement
	4.4.3	OD-Based TTR Information Delivery
4.5	Concl	usion and Recommendations
Ref	erences	
	oan Tr	avel Behavior Study Based on Data Fusion
		,
	del	Modelling and Reschering Analysis of Ag.
Mo	del	' lingqiao Zou and Huiping Li
Mo Mei	del ng Li, N	lingqiao Zou and Huiping Li
Mo <i>Mei</i> 5.1	del ng Li, M Introd	fingqiao Zou and Huiping Li luction
Mei 5.1 5.2	ng Li, M Introc Resea	ingqiao Zou and Huiping Li Iuction rch Background
Mo <i>Mei</i> 5.1	ng Li, M Introd Resea Agent	lingqiao Zou and Huiping Li luction rch Background -Based Traveler Behavior Model
Mei 5.1 5.2	Introd Resea Agent 5.3.1	lingqiao Zou and Huiping Li luction rch Background -Based Traveler Behavior Model Travel Behavior Data Collection
Mo Mei 5.1 5.2	Introd Resea Agent 5.3.1 5.3.2	lingqiao Zou and Huiping Li luction rch Background -Based Traveler Behavior Model Travel Behavior Data Collection Model Development
Mo Mer 5.1 5.2 5.3	Introd Resea Agent 5.3.1 5.3.2 5.3.3	lingqiao Zou and Huiping Li luction rch Background -Based Traveler Behavior Model Travel Behavior Data Collection Model Development Policy and Scenario Analysis
Mo Mei 5.1 5.2	Introd Resea Agent 5.3.1 5.3.2 5.3.3 Behav	lingqiao Zou and Huiping Li luction rch Background -Based Traveler Behavior Model Travel Behavior Data Collection Model Development Policy and Scenario Analysis ior Model in Cooperation of VMS and Traffic Signal
Mo Mer 5.1 5.2 5.3	Introd Resea Agent 5.3.1 5.3.2 5.3.3 Behav 5.4.1	lingqiao Zou and Huiping Li luction rch Background -Based Traveler Behavior Model Travel Behavior Data Collection Model Development Policy and Scenario Analysis ior Model in Cooperation of VMS and Traffic Signal Drivers' Diversion Model
Mo Mer 5.1 5.2 5.3	Introd Resea Agent 5.3.1 5.3.2 5.3.3 Behav 5.4.1 5.4.2	lingqiao Zou and Huiping Li luction rch Background -Based Traveler Behavior Model Travel Behavior Data Collection Model Development Policy and Scenario Analysis ior Model in Cooperation of VMS and Traffic Signal Drivers' Diversion Model Cooperative Mechanism of VMS and TSC
Mo Mer 5.1 5.2 5.3	Introd Resea Agent 5.3.1 5.3.2 5.3.3 Behav 5.4.1 5.4.2 5.4.3	lingqiao Zou and Huiping Li luction rch Background -Based Traveler Behavior Model Travel Behavior Data Collection Model Development Policy and Scenario Analysis ior Model in Cooperation of VMS and Traffic Signal Drivers' Diversion Model

6.	U	rban Travel Mobility Exploring With Large-Scale ajectory Data	137
	Jin	jun Tang	
	6.1	Introduction	137
	6.2	Transportation Demand Analysis and Attractiveness Modeling	139
		6.2.1 Data Source	139
		6.2.2 Distribution Pattern of Demand	139
		6.2.3 Clustering Based on DBSCAN	142
		6.2.4 Attractiveness Model for Choosing Pick-Up Clusters	145
	6.3	Trips Distribution Analysis	147
		6.3.1 Distance Distribution	148
		6.3.2 Travel Time Distribution	149
		6.3.3 Average Speed Distribution	153
	6.4		155
	6.5	by italiac Characteristics	158
		6.5.1 Degree and Strength Distribution	158
		6.5.2 Degree vs Strength Distribution	159
		6.5.3 $k_i^{\text{out}} k_j^{\text{in}}$ vs w_{ij} Correlation	161
		6.5.4 Betweenness vs Strength and Clustering Coefficient	162
		6.5.5 Network Construction and Structure Entropy	164
	6.6		166
		6.6.1 Traffic Zone Identification	166
		6.6.2 Travel Pattern Analysis	168
	6.7	6.6.3 Hotspot Analysis Conclusions	169
		erences	171
	Ken	erences	173
7.	Pul	olic Transportation Big Data Mining and Analysis olei Ma and Xi Chen	175
	7.1	Introduction	175
	7.2	Public Transportation Big Data Preprocessing Method	178
		7.2.1 Public Transportation Smart Card Data Cleaning	178
		7.2.2 GPS Data Cleaning	180
	7.3	Application of Public Transportation Data in Planning	181
		7.3.1 Extraction of the Commuting Characteristics of Public	101
		Transportation Passengers	183
		7.3.2 Identification of Commuters and Estimation of	.05
		Their Places of Work and Residence	184
	7.4	Application of Public Transportation Data in Operation	
		and Management	189
		7.4.1 Prediction Model for Public Transportation Bus	
		Arrival Times	190
		7.4.2 Case Study	191

	7.5	Introduction of a Public Transportation Big Data Platform Based on E-Science	192
		7.5.1 Main Functions of the Public Transportation Big Data	
		Platform	194
		7.5.2 Functions of the Public Transportation Big Data Platform	195
	7.6	Conclusions	199
		nowledgment	199
		erences	199
	Sim	nulation-Based Optimization for Network	
•	Mo	deling With Heterogeneous Data	201
	Xiq	un (Michael) Chen	
	8.1	Introduction	201
	8.2	Literature Review	203
	8.3	Simulation-Based Optimization	204
		8.3.1 Framework	204
		8.3.2 Design of Experiments (DoE)	205
		8.3.3 Surrogate Models	205
		8.3.4 Link-Based and Path-Based MFD	207
		8.3.5 Calibration and Exploitation	208
	8.4		209
		8.4.1 Heterogeneous Data	209
		8.4.2 Simulation Network	209
		8.4.3 Validation	211
		8.4.4 SBO Results	216
		Conclusions	221
		knowledgments	221
	Ref	ferences	223
9.	Ne	etwork Modelling and Resilience Analysis of Air	
	Tra	ansportation: A Data-Driven, Open-Source	
		proach	227
	Xia	oqian Sun and Sebastian Wandelt	
	9.1	Introduction	227
	9.2	Data Preparation	228
	9.3	Air Transportation Network Modeling	229
	9.4	Air Transportation Network Analysis	234
		9.4.1 Centralities	234
		9.4.2 Robustness Curves	237
		9.4.3 Air-Side Accessibility of Nodes	239
		9.4.4 Communities	239
		9.4.5 Airline Networks	241
		9.4.6 Multiple Airport Regions	242
	9.5	Conclusions	244
	Re	ferences	244

10.	Hea	alth Assessment of Electric Multiple Units	247
	Tian	yun Shi, Haiyan Shen, Li Li, Peng Sun and Ge Guo	
	10.1	Introduction	247
	10.2	Data Source and Structure	249
	10.3	Health Assessment of EMU	253
		10.3.1 Feature Layer Data Fusion	253
		10.3.2 Decision-Making Level Data Fusion	254
	10.4	Data Application and Analysis	256
		10.4.1 Feature Layer Health Data Analysis	256
		10.4.2 Decision-Making Level Health Data Analysis	258
		Conclusion and Outlook	262
	Refer	rences	262
			202
ndex			265

Contributors

Numbers in Parentheses indicate the pages on which the author's contributions begin.

- Matthew J. Barth (11), Department of Electrical and Computer Engineering; College of Engineering-Centre for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA, United States
- Kanok Boriboonsomsin (11), College of Engineering-Centre for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA, United States
- Xi Chen (175), School of Transportation Science and Engineering, Beihang University. Beijing, People's Republic of China
- Xiqun (Michael) Chen (201), College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, People's Republic of China
- Ge Guo (247), Institute of Computing Technology, China Academy of Railway Sciences, Beijing, People's Republic of China; Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
- Meng Li (111), Department of Civil Engineering, Tsinghua University, Beijing, People's Republic of China
- Huiping Li (111), Department of Civil Engineering, Tsinghua University, Beijing, People's Republic of China
- Li Li (247), Institute of Computing Technology, China Academy of Railway Sciences, Beijing, People's Republic of China
- Xiaolei Ma (175), School of Transportation Science and Engineering, Beihang University, Beijing, People's Republic of China
- Xuewei Qi (11), Department of Electrical and Computer Engineering; College of Engineering-Centre for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA, United States
- Haiyan Shen (247), Institute of Computing Technology, China Academy of Railway Sciences, Beijing, People's Republic of China
- Tianyun Shi (247), Institute of Computing Technology, China Academy of Railway Sciences, Beijing, People's Republic of China
- Xiaoqian Sun (227), National Key Laboratory of CNS/ATM, School of Electronic and Information Engineering, Beihang University, Beijing, People's Republic of China
- Peng Sun (247), Institute of Computing Technology, China Academy of Railway Sciences, Beijing, People's Republic of China