GeoPlanet: Earth and Planetary Sciences

Series Editors: Paweł Rowiński · Marek Banaszkiewicz · Janusz Pempkowiak · Marek Lewandowski

Ewa Niemczura · Barry Smalley · Wojtek Pych Editors

Determination of Atmospheric Parameters of B-, A-, F- and G-Type Stars

Lectures from the School of Spectroscopic Data Analyses

This book introduces the theory of stellar atmospheres. Almost everything we know about stars is by analysis of the radiation coming from their atmospheres. Several aspects of astrophysics require accurate atmospheric parameters and abundances. Spectroscopy is one of the most powerful tools at an astronomer's disposal, allowing the determination of the fundamental parameters of stars: surface temperature, gravity, chemical composition, magnetic field, rotation and turbulence. These can be supplemented by distance measurements or pulsation parameters providing information about stellar interior and stellar evolution, otherwise unavailable.

The volume is based on lectures presented at the Wrocław's Spectroscopic School aimed at training young researchers in performing quantitative spectral analysis of low-, mid-, and high-resolution spectra of B, A, and F-type stars.

About the series

The GeoPlanet series is a forum for presenting the latest achievements in the Earth and space sciences. It is published by the GeoPlanet consortium (Earth and Planetary Research Centre) formed by five institutes affiliated with the Polish Academy of Sciences: Institute of Geophysics, Space Research Centre, Institute of Geological Sciences, and Institute of Oceanology, and Nicolaus Copernicus Astronomical Centre. Its main objective is a multidisciplinary approach to link scientific activities in various Earth-related fields (geophysics, geology, oceanology) with Solar System research. Our publications encompass topical monographs and selected conference proceedings, authored or edited by leading experts of international repute as well as by promising young scientists. The GeoPlanet series aims to provide the stimulus for new ideas and discoveries by reporting on the state of the art and laying the foundations for the future development of the Geosciences.

Astronomy/Astrophysics ISSN 2190-5193

Spring School of Spectroscopic Data Analyses: Determination of Atmospheric Parameters of B, A, F and G-type Stars—Introduction	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Stellar Atmospheres: Basic Processes and Equations	9
How to Build a Model of the Atmosphere and Spectrum	25
Model Atmosphere Codes: ATLAS12 and ATLAS9	39
Atomic Data: Where to Get Them, How to Use Them	53
Problems with Atomic and Molecular Data: Including All the Lines	63
Spectral Classification: The First Step in Quantitative Spectral Analysis	
Effective Temperature Determination	
How to Determine Surface Gravity from Stellar Spectra	
Stellar Parameters from Photometry	111

Spectral Lines Analysis: Rotational Velocity and Velocity Fields Giovanni Catanzaro	121
Convection and Turbulence	131
Diffusion and Its Manifestation in Stellar Atmospheres	141
Basics of the NLTE Physics	149
NLTE Analysis of Spectra: OBA Stars	159
NLTE Radiative Transfer in Cool Stars	169
Analysis of Stellar Spectra with 3-D and NLTE Models	187
Current Status of NLTE Analysis of Stellar Atmospheres Jiří Kubát	207
Spectroscopic Analysis of Cool Giants and Supergiants Maria Bergemann, Rolf-Peter Kudritzki and Ben Davies	217
What Influences the Results? Barry Smalley	233
Solar Abundance Problem	
Magnetic Chemically Peculiar Stars	
Magnetic Fields Markus Schöller and Swetlana Hubrig	269
Spectral Synthesis Codes and Methods of Analysis	277

\$

A Gentle Introduc	ction to SME	287
Nikolai Piskunov		
ARES + MOOG:	A Practical Overview of an Equivalent	/
Width (EW) Meth	nod to Derive Stellar Parameters	297
Sérgio G. Sousa		