Contents

Part I
Representations and Characters 1
1 Generalities on linear representations 3
1.1 Definitions 3
1.2 Basic examples 4
1.3 Subrepresentations 5
1.4 Irreducible representations 7
1.5 Tensor product of two representations 7
1.6 Symmetric square and alternating square 9
2 Character theory 10
2.1 The character of a representation 10
2.2 Schur's lemma; basic applications 13
2.3 Orthogenality relations for characters 15
2.4 Decomposition of the regular representation 17
2.5 Number of irreducible representations 18
2.6 Canonical decomposition of a representation 21
2.7 Explicit decomposition of a representation 23
3 Subgroups, products, induced representations 25
3.1 Abelian subgroups 25
3.2 Product of two groups 26
3.3 Induced representations 28
4 Compact groups 32
4.1 Compact groups 32
4.2 Invariant measure on a compact group 32
4.3 Linear representations of compact groups 33
5 Examples
5.1 The cyclic Group C_{n} 35
5.2 The group C_{∞} 35
5.3 The dihedral group D_{n} 36
5.4 The group $\mathrm{D}_{n h}$ 36
5.5 The group D_{∞} 38
5.6 The group $D_{\text {sh }}$ 39
5.7 The alternating group \mathscr{X}_{4} 40 40
5.8 The symmetric group \mathfrak{S}_{4} 41 41
5.9 The group of the cube 42 43
Bibliography: Part I 44
Part II
Representations in Characteristic Zero 45
6 The group algebra 47
6.1 Representations and modules 47
6.2 Decomposition of $\mathbf{C}[\mathrm{G}]$ 48
6.3 The center of C[G] 50
6.4 Basic properties of integers 50
6.5 Integrality properties of characters. Applications 52
7 Induced representations; Mackey's criterion 54
7.1 Induction 54
7.2 The character of an induced representation; 55 the reciprocity formula
7.3 Restriction to subgroups 58
7.4 Mackey's irreducibility criterion 59
8 Examples of induced representations 61
8.1 Normal subgroups; applications to the degrees of the 61 irreducible representations
8.2 Semidirect products by an abelian group 62
8.3 A review of some classes of finite groups 63
8.4 Sylow's theorem 65
8.5 Linear representations of supersolvable groups 66
9 Artin's theorem 68
9.1 The ring $\mathrm{R}(\mathrm{G})$ 68
9.2 Statement of Artin's theorem 70
9.3 First proof 70
9.4 Second proof of (i) \Rightarrow (ii) 72
10 A theorem of Brauer 74
10.1 p-regular elements; p-elementary subgroups 74
10.2 Induced characters arising from p-elementary 75 subgroups
10.3 Construction of characters 76
10.4 Proof of theorems 18 and 18^{\prime} 78
10.5 Brauer's theorem 78
11 Applications of Brauer's theorem 81
11.1 Characterization of characters 81
11.2 A theorem of Frobenius 85
11.4 The spectrum of $A \otimes R(G)$ 86
12 Rationality questions 90
12.1 The rings $\mathrm{R}_{\mathrm{K}}(\mathrm{G})$ and $\mathrm{R}_{\mathrm{K}}(\mathrm{G})$ 90
12.2 Schur indices 92 92
12.3 Realizability over cyclotomic fields 94
12.4 The rank of $\mathrm{R}_{\mathrm{K}}(\mathrm{G})$
12.4 The rank of $\mathrm{R}_{\mathrm{K}}(\mathrm{G})$ 95 95
12.5 Generalization of Artin's theorem 96 96
12.7 Proof of theorem 28 97 97 99
13 Rationality questions: examples 102 102
13.1 The field \mathbf{Q} 102
13.2 The field \mathbf{R} 106
Bibliography: Part II 111
Part III
Introduction to Brauer Theory 113
14 The groups $R_{K}(G), R_{k}(G)$, and $P_{k}(G)$ 115
14.1 The rings $\mathrm{R}_{\mathrm{K}}(\mathrm{G})$ and $\mathrm{R}_{k}(\mathrm{G})$ 115
14.2 The groups $\mathrm{P}_{k}(\mathrm{G})$ and $\mathrm{P}_{\mathrm{A}}(\mathrm{G})$ 116
14.3 Structure of $\mathrm{P}_{k}(\mathrm{G})$ 116
14.4 Structure of $\mathrm{P}_{\mathrm{A}}(\mathrm{G})$ 118
14.5 Dualities 120
14.6 Scalar extensions 122
15 The cde triangle 124
15.1 Definition of $c: \mathrm{P}_{k}(\mathrm{G}) \rightarrow \mathrm{R}_{k}(\mathrm{G})$ 124
15.2 Definition of $d: \mathrm{R}_{\mathrm{K}}(\mathrm{G}) \rightarrow \mathrm{R}_{k}(\mathrm{G})$ 125
15.3 Definition of $e: \mathrm{P}_{k}(\mathrm{G}) \rightarrow \mathrm{R}_{\mathrm{K}}(\mathrm{G})$ 127
15.4 Basic properties of the cde triangle 127
15.5 Example: p^{\prime}-groups 128
15.6 Example: p-groups 129
15.7 Example: products of p^{\prime}-groups and p-groups 129
16 Theorems 131
16.1 Properties of the cde triangle 131
16.2 Characterization of the image of e 133
16.3 Characterization of projective A [G]-modules 134 by their characters
16.4 Examples of projective A [G]-modules: irreducible 136 representations of defect zero
17 Proofs
138
138
17.1 Change of groups
17.1 Change of groups
138
138
17.2 Brauer's theorem in the modular case
17.2 Brauer's theorem in the modular case
139
139
17.3 Proof of theorem 33
17.3 Proof of theorem 33
140
140
17.4 Proof of theorem 35
17.4 Proof of theorem 35
142
142
17.5 Proof of theorem 37
17.5 Proof of theorem 37
143
143 144
17.6 Proof of theorem 38
17.6 Proof of theorem 38
18 Modular characters
147
147
18.1 The modular character of a representation
147
147
18.2 Independence of modular characters 149
18.3 Reformulations
18.3 Reformulations 151
18.4 A section for d 152
18.5 Example: Modular characters of the symmetric group \widetilde{S}_{4} 153
18.6 Example: Modular characters of the alternating group \mathfrak{A}_{5} 156
19 Application to Artin representations 159
19.1 Artin and Swan representations 159
19.2 Rationality of the Artin and Swan representations 161
19.3 An invariant 162
Appendix 163
Bibliography: Part III 165
Index of notation 167
Index of terminology 169

