AnomoD | M

	5.2 Mathematical Foundations: A Fundamental Theorem in pol 1.2.2	
	2.6 Some Applications of Matrix Models v? manLi bns noitstaisentil 8.8.	
C	ontents	
C.C.	2.7 Generalizing the Manix Mudel	
	5.3.5 Periodic Orbits	
	5.7 Numerical Methods xibnequA 2.2	
Lis	t of Figures	ix
Lis	t of Tables	xv
Pre	face	xvii
-	1 3/1.1 Channel Cating and Conformationer in 19 hos research altraday in	191
-	what Are Dynamic Models?	1
	1.1 Descriptive versus Mechanistic Models	2
	1.2 Chinook Salmon	4
	1.3 Bathtub Models	6
	1.4 Many Bathtubs: Compartment Models	/
	1.4.1 Enzyme Kinetics	0
	1.4.2 The Modeling Process	11
	1.4.5 Pharmacokinetic Models	15
	1.6 Optimization Models	10
	1.7 Why Pother?	20
	1.7 Why bother: 1.8 Theoretical versus Practical Models	21
	1.0 What's Next?	24
101	1.0 Deferences	20
	1.10 Kelelences	20
2	Matrix Models and Structured Population Dynamics	31
	2.1 The Population Balance Law	32
	2.2 Age-Structured Models	33
	2.2.1 The Leslie Matrix	34
	2.2.2 Warning: Prebreeding versus Postbreeding Models	37
	2.3 Matrix Models Based on Stage Classes	38
	2.4 Matrices and Matrix Operations	42
	2.4.1 Review of Matrix Operations	43

vi | Contents

	2.4.2 Solution of the Matrix Model	44
	2.5 Eigenvalues and a Second Solution of the Model	44
	2.5.1 Left Eigenvectors	48
	2.6 Some Applications of Matrix Models	49
	2.6.1 Why Do We Age?	49
	2.6.2 Elasticity Analysis and Conservation Biology	52
	2.6.3 How Much Should We Trust These Models?	58
	2.7 Generalizing the Matrix Model	59
	2.7.1 Stochastic Matrix Models	59
	2.7.2 Density-Dependent Matrix Models	61
	2.7.3 Continuous Size Distributions	63
	2.8 Summary and Conclusions	66
	2.9 Appendix	67
	2.9.1 Existence and Number of Eigenvalues	67
	2.9.2 Reproductive Value	67
	2.10 References	68
2	Membrane Channels and Action Potentials	1.450
	3.1 Membrane Currents	71
	3.1.1 Channel Cating and Conformational States	72
	3.2 Markov Chains	74
	3.2 1 Coin Tossing	77
	3.2.2 Markov Chains	/8
	3.2.3 The Neuromuscular Innction	82
	3.3 Voltage-Gated Channels	86
	3.4 Membranes as Electrical Circuits	90
	3 4 1 Reversal Potential	92
	3 4 2 Action Potentials	94
	3.5 Summary	95
	3.6 Appendix: The Central Limit Theorem	103
	3.7 References	104
-	1,8 Theoretical versus Fractical Models and the area cossectives on 879 ELEVIS	100
4	Cellular Dynamics: Pathways of Gene Expression	107
	4.1 Biological Background	108
	4.2 A Gene Network That Acts as a Clock	110
	4.2.1 Formulating a Model	111
	4.2.2 Model Predictions	113
	4.3 Networks That Act as a Switch	119
	4.4 Systems Biology	125
	4.4.1 Complex versus Simple Models	129
	4.5 Summary	131
	4.6 References	132

5	Dynamical Systems	135
	5.1 Geometry of a Single Differential Equation	136
	5.2 Mathematical Foundations: A Fundamental Theorem	138
	5.3 Linearization and Linear Systems	141
	5.3.1 Equilibrium Points	141
	5.3.2 Linearization at Equilibria	8 142
	5.3.3 Solving Linear Systems of Differential Equations	144
	5.3.4 Invariant Manifolds	149
	5.3.5 Periodic Orbits	150
	5.4 Phase Planes	151
	5.5 An Example: The Morris-Lecar Model	8 154
	5.6 Bifurcations	160
	5.7 Numerical Methods	175
	5.8 Summary notantizenget bisit mask ant aniverget £.0.8	181
	5.9 References anoizubno 3	181
6	Differential Equation Models for Infectious Disease	183
0	6.1 Sir Ronald Ross and the Enidemic Curve	183
	6.2 Rescaling the Model	187
	6.3 Endemic Diseases and Oscillations	107
	6.3.1 Analysis of the SIR Model with Births	191
	6.3.2 Summing Un	197
	6.4 Gonorrhea Dynamics and Control	200
	6 4 1 A Simple Model and a Paradox	200
	6 4 2 The Core Group	200
	6.4.3 Implications for Control	201
	6.5 Drug Resistance	205
	6.6 Within-Host Dynamics of HIV	200
	6.7 Conclusions	213
	6.8 References	213
205		211
7	Spatial Patterns in Biology	217
	7.1 Reaction-Diffusion Models	218
	7.2 The Turing Mechanism	223
	7.3 Pattern Selection: Steady Patterns	226
	7.4 Moving Patterns: Chemical Waves and Heartbeats	232
	7.5 References	241
8	Agent-Based and Other Computational Models	
Pic	for Complex Systems	243
	8.1 Individual-Based Models in Ecology	245
	8.1.1 Size-Dependent Predation	245
	812 Swarm	247

	8.1.3 Individual-Based Modeling of Extinction Risk	Dynamical Systems	248
	8.2 Artificial Life	5.1 Geometry of a Singh	252
	8.2.1 Tierra		253
141	8.2.2 Microbes in Tierra		255
	8.2.3 Avida		257
	8.3 The Immune System and the Flu		259
	8.4 What Can We Learn from Agent-Based Mode	els?	260
	8.5 Sensitivity Analysis		261
	8.5.1 Correlation Methods		264
	8.5.2 Variance Decomposition		266
	8.6 Simplifying Computational Models	5.5 An Example: The M	269
	8.6.1 Separation of Time Scales		269
	8.6.2 Simplifying Spatial Models		272
	8.6.3 Improving the Mean Field Approximation		276
	8.7 Conclusions		277
	8.8 Appendix: Derivation of Pair Approximation		278
	8.9 References		279
9	Building Dynamic Models	aboM act pollegial 0 ac	202
191	9.1 Setting the Objective		203
	9.2 Building an Initial Model		204
	9.2.1 Conceptual Model and Diagram		203
	9.3 Developing Equations for Process Rates		201
	9.3.1 Linear Rates: When and Why?	a laberta aconsidente a la seconda de la	291
	9.3.2 Nonlinear Rates from "First Principles"	S. & J. Therefore Company	291
	9.3.3 Nonlinear Rates from Data: Fitting Parametric	Models	293
	9.3.4 Nonlinear Rates from Data: Selecting a Parame	tric Model	294
	9.4 Nonlinear Rates from Data: Nonparametric N	Andels	290
	9.4.1 Multivariate Rate Equations		204
	9.5 Stochastic Models	5 S. Beleronces	204
	9.5.1 Individual-Level Stochasticity	Contrologi D.C.	206
	9.5.2 Parameter Drift and Exogenous Shocks	Spatial Patterns in	200
	9.6 Fitting Rate Equations by Calibration	7.1 Reaction-Diffizient	211
	9.7 Three Commandments for Modelers	7.2 The Turing Mechan	211
	9.8 Evaluating a Model	7.3 Pattern Selection: S	215
	9.8.1 Comparing Models	7.4 Moving Patterns: C	817
	9.9 References	7.5 References	820
		Those have 5 toons	120
Inde	x - Systems Biology	Algent-Dasen and a	323