

Contents

Contributors xi

Preface to the Third Edition xiii

Preface to the Second Edition xv

Preface to the First Edition xvii

1 Rubber Elasticity: Basic Concepts and Behavior

A. N. Gent

- I. Introduction 1
- II. Elasticity of a Single Molecule 2
- III. Elasticity of a Three-Dimensional Network of Polymer Molecules 5
- IV. Comparison with Experiment 10
- V. Continuum Theory of Rubber Elasticity 12
- VI. Second-Order Stresses 20
- VII. Elastic Behavior Under Small Deformations 21
- VIII. Some Unsolved Problems in Rubber Elasticity 25
- Acknowledgments 26
- References 26

2 Polymerization: Elastomer Synthesis

Roderic P. Quirk and Deanna L. Gomochak Pickel

- I. Introduction 29
- II. Classification of Polymerization Reactions and Kinetic Considerations 30
- III. Polyaddition/Polycondensation 34
- IV. Chain Polymerization by Free Radical Mechanism 36
- V. Emulsion Polymerization 44
- VI. Copolymerization 55
- VII. Chain Polymerization by Cationic Mechanism 61

VIII. Chain Polymerization by Anionic Mechanism	69
IX. Stereospecific Chain Polymerization and Copolymerization by Coordination Catalysts	79
X. Graft and Block Copolymerization	89
References	96

3 Structure Characterization in the Science and Technology of Elastomers

C. M. Roland

I. Introduction	105
II. Chemical Composition	106
III. Sequence Distribution of Repeat Units	109
IV. Chain Architecture	111
V. Glass Transition and Secondary Relaxation Processes	128
VI. Morphology	132
Acknowledgments	148
References	148

4 The Molecular Basis of Rubberlike Elasticity

Burak Erman and James E. Mark

I. Introduction	157
II. Structure of a Typical Network	158
III. Elementary Molecular Theories	160
IV. More Advanced Molecular Theories	168
V. Phenomenological Theories and Molecular Structure	172
VI. Swelling of Networks and Responsive Gels	173
VII. Enthalpic and Entropic Contributions to Rubber Elasticity: Force-Temperature Relations	176
VIII. Direct Determination of Molecular Dimensions	177
IX. Single-Molecule Elasticity	178
References	181

5 The Viscoelastic Behavior of Rubber

K. L. Ngai and Donald J. Plazek

I. Introduction	183
II. Definitions of Measured Quantities, $J(t)$, $G(t)$, and $G^*(\omega)$, and Spectra $L(\log \lambda)$ and $H(\log \tau)$	184

III. The Glass Temperature	190
IV. Volume Changes During Curing	191
V. Viscoelastic Behavior Above T_g	195
VI. Viscoelastic Behavior of Other Model Elastomers	201
VII. The Calculation of the Tear Energy of Elastomers from Their Viscoelastic Behavior	211
VIII. Theoretical Interpretation of Viscoelastic Mechanisms and Anomalies	216
IX. Appendix: Nomenclature	230
References	233

6 Rheological Behavior and Processing of Unvulcanized Rubber

James L. White

I. Introduction	237
II. Basic Concepts of Mechanics	242
III. Rheological Properties	245
IV. Boundary Conditions	269
V. Mechanochemical Behavior	271
VI. Rheological Measurements	275
VII. Processing Technology	283
VIII. Engineering Analysis of Processing	298
References	310

7 Vulcanization

Aubert Y. Coran

I. Introduction	321
II. Definition of Vulcanization	322
III. Effects of Vulcanization on Vulcanizate Properties	323
IV. Characterization of the Vulcanization Process	325
V. Vulcanization by Sulfur Without Accelerator	328
VI. Accelerated-Sulfur Vulcanization	331
VII. Vulcanization by Phenolic Curatives, Benzoquinone Derivatives, or Bismaleimides	349
VIII. Vulcanization by the Action of Metal Oxides	354
IX. Vulcanization by the Action of Organic Peroxides	356
X. Dynamic Vulcanization	361
References	364

8 Reinforcement of Elastomers by Particulate Fillers

Jean-Baptiste Donnet and Emmanuel Custodero

- I. Introduction 367
- II. Preparation of Fillers 368
- III. Morphological and Physicochemical Characterization of Fillers 370
- IV. The Mix: A Nanocomposite of Elastomer and Filler 380
- V. Mechanical Properties of Filled Rubbers 386
- References 396

9 The Science of Rubber Compounding

Brendan Rodgers and Walter Waddell

- I. Introduction 401
- II. Polymers 402
- III. Filler Systems 415
- IV. Stabilizer Systems 427
- V. Vulcanization System 433
- VI. Special Compounding Ingredients 441
- VII. Compound Development 445
- VIII. Compound Preparation 449
- IX. Environmental Requirements in Compounding 450
- X. Summary 452
- References 453

10 Strength of Elastomers

A. N. Gent

- I. Introduction 455
- II. Initiation of Fracture 456
- III. Threshold Strengths and Extensibilities 463
- IV. Fracture Under Multiaxial Stresses 465
- V. Crack Propagation 469
- VI. Tensile Rupture 479
- VII. Repeated Stressing: Mechanical Fatigue 485
- VIII. Surface Cracking by Ozone 488
- IX. Abrasive Wear 489
- Acknowledgments 492
- References 493

11 The Chemical Modification of Polymers

A. F. Halasa, Jean Marie Massie, and R. J. Ceresa

- I. Introduction 497
- II. Chemical Modification of Polymers Within Backbone and Chain Ends 498
- III. Esterification, Etherification, and Hydrolysis of Polymers 500
- IV. The Hydrogenation of Polymers 503
- V. Dehalogenation, Elimination, and Halogenation Reactions in Polymers 505
- VI. Other Addition Reactions to Double Bonds 509
- VII. Oxidation Reactions of Polymers 512
- VIII. Functionalization of Polymers 512
- IX. Miscellaneous Chemical Reactions of Polymers 513
- X. Block and Graft Copolymerization 513
- References 527

12 Elastomer Blends

Sudhin Datta

- I. Introduction 529
- II. Miscible Elastomer Blends 531
- III. Immiscible Elastomer Blends 538
- IV. Conclusion 550
- V. Appendix 1: Acronyms for Common Elastomers 551
- References 551

13 Thermoplastic Elastomers

Brian P. Grady and Stuart L. Cooper

- I. Introduction 555
- II. Synthesis of Thermoplastic Elastomers 560
- III. Morphology of Thermoplastic Elastomers 567
- IV. Properties and Effect of Structure 586
- V. Thermodynamics of Phase Separation 594
- VI. Thermoplastic Elastomers at Surfaces 600
- VII. Rheology and Processing 606
- VIII. Applications 610
- References 612

14 Tire Engineering

Brendan Rodgers and Walter Waddell

- I. Introduction 619
- II. Tire Types and Performance 620
- III. Basic Tire Design 621
- IV. Tire Engineering 625
- V. Tire Materials 636
- VI. Tire Testing 651
- VII. Tire Manufacturing 655
- VIII. Summary 660
- References 661

15 Recycling of Rubbers

Avraam I. Isayev

- I. Introduction 663
- II. Retreading of Tire 665
- III. Recycling of Rubber Vulcanizates 665
- IV. Use of Recycled Rubber 682
- V. Pyrolysis and Incineration of Rubber 694
- VI. Concluding Remarks 695
- Acknowledgments 696
- References 696

Index 703