Contents

Prefa	Ce	xvii	2.4	The host surface is especially important
	owledgments	xix		for attachment, penetration, and
Auth		xxi		uncoating
1	THE FUNDAMENTALS OF		2.5	Viral gene expression and genome replication take advantage of host transcription, translation, and replication features
	MOLECULAR AND CELLULAR VIROLOGY	1	2.6	The host cytoskeleton and membranes are typically crucial during virus assembly
1.1	Molecular and cellular virology focuses on the molecular interactions that occur		2.7	Host-cell surfaces influence the mechanism of virus release
1.2	when a virus infects a host cell The discipline of virology can be traced	2	2.8	Viruses can also cause long-term infections
	historically to agricultural and medical	3	2.9	Herpesvirus is a model for latent infections
	science	2	2.10	Research in molecular and cellular
1.3	Basic research in virology is critical for molecular biology, both historically and today	6		virology often focuses on the molecular details of each stage of the replication cycle
1.4	Viruses, whether understood as living or not, are the most abundant evolving			tial concepts
	entities known	8	Ques	
1.5	Viruses can be defined unambiguously by four traits	8	Furth	ner reading
1.6	Virions are infectious particles minimally made up of nucleic acids and proteins	10	3	ATTACHMENT, PENETRATION, AND UNCOATING
1.7	Viruses can be classified according to the ways they synthesize and use mRNA	11	3.1	Viruses enter the human body through one of six routes
1.8	Viruses are propagated in the laboratory by mixing them with host cells	12	3.2	The likelihood of becoming HIV+ depends on the route of transmission
1.9	Viral sequences are ubiquitous in animal genomes, including the human genome	14	Ciakes R2-s	and the amount of virus in the infected tissue
Esser	itial concepts	17	3.3	Viruses are selective in their host range
Ques		17		and tissue tropism
Furth	er reading	18	3.4	The virion is a genome delivery device
2	THE VIRUS REPLICATION CYCLE	19	3.5	The genomic contents of a virion are irrelevant for attachment, penetration, and uncoating
			3.6	Animal viruses attach to specific cells
2.1	Viruses reproduce through a lytic virus replication cycle	20	5.0	and can spread to multiple tissues
2.2	Molecular events during each stage of the virus replication cycle	22	3.7	Noncovalent intermolecular forces are responsible for attaching to host cells
2.3	The influenza virus is a model for replication of an animal virus	23	3.8	Most animal virus receptors are glycoproteins

3.9 Animal virus receptors can be identified through genetic, biochemical, and immunological approaches

43

43

44

45

47

50

50

51

51

52

53

55

56

56

58

60

60

4

- 3.10 Animal virus receptors can be identified through molecular cloning
- 3.11 Animal virus receptors can be identified through affinity chromatography
- 3.12 Antibodies can be used to identify animal virus receptors
- 3.13 Rhinovirus serves as a model for attachment by animal viruses lacking spikes
- 3.14 Several independent lines of evidence indicate that ICAM-1 is the rhinovirus receptor
- 3.15 Experiments using molecular genetics support the conclusion that ICAM-1 is the rhinovirus receptor
- 3.16 Structural biology experiments support the conclusion that ICAM-1 is the rhinovirus receptor
- 3.17 Bioinformatics comparisons support the conclusion that ICAM-1 is the rhinovirus receptor
- 3.18 Influenza serves as a model for attachment by enveloped viruses
- 3.19 The influenza HA spike protein binds to sialic acids
- 3.20 The second stage of the virus replication cycle includes both penetration and uncoating and, if necessary, transport to the nucleus
- 3.21 Viruses subvert the two major eukaryotic mechanisms for internalizing particles
- 3.22 Many viruses subvert receptor-mediated endocytosis for penetration
- 3.23 Herpesvirus penetrates the cell through phagocytosis
- 3.24 Common methods for determining the mode of viral penetration include use of drugs and RNA interference
- 3.25 The virion is a metastable particle primed for uncoating once irreversible attachment and penetration have occurred 59
- 3.26 Picornaviruses are naked viruses that release their genomic contents through pore formation
- 3.27 Some enveloped viruses use membrane fusion with the outside surface of the cell for penetration

3.28 Vesicle fusion in neuroscience is a model for viral membrane fusion 3.29 HIV provides a model of membrane fusion triggered by a cascade of protein-protein interactions 3.30 Influenza provides a model for viral envelope fusion triggered by acidification of an endocytic vesicle 3.31 The destination for the virus genome may be the cytoplasm or the nucleus 3.32 Subversion of the cellular cytoskeleton is critical for uncoating 3.33 Viruses that enter an intact nucleus must manipulate gated nuclear pores 3.34 Viruses introduce their genomes into

61

63

64

65

65

66

67

68

69

71

77

78

80

81

81

83

- the nucleus in a variety of ways 3.35 Adenovirus provides a model for uncoating that delivers the viral
- genome into the nucleus 3.36 The unusual uncoating stages of
- reoviruses and poxviruses leave the virions partially intact in the cytoplasm
- 3.37 Viruses that penetrate plant cells face plant-specific barriers to infection
 3.38 Plant viruses are often transmitted

by biting arthropod vectors	72
Essential concepts	73
Questions	74
Further reading	74

GENE EXPRESSION AND GENOME REPLICATION IN MODEL BACTERIOPHAGES

- 4.1 Bacterial host cell transcription is catalyzed by a multisubunit machine that catalyzes initiation, elongation, and termination
- 4.2 Bacterial host cell and bacteriophage mRNA are typically polycistronic
- 4.3 Transcription and translation in bacterial host cells and bacteriophages are nearly simultaneous because of the proximity of ribosomes and
- chromosomes 4.4 Bacterial translation initiation, elongation, and termination are
- controlled by translation factors
- 4.5 Bacteriophages, like all viruses, encode structural and nonstructural proteins

4.6 The T7 bacteriophage has naked, complex virions and a large doublestranded DNA genome

84

85

85

86

87

88

90

92

93

96

96

98

99

100

100

101

102

- 4.7 Bacteriophage T7 encodes 55 proteins in genes that are physically grouped together by function
- 4.8 Bacteriophage T7 proteins are expressed in three major waves
- 4.9 The functions of bacteriophage proteins often correlate with the timing of their expression
- 4.10 Bacteriophage T7 gene expression is highly regulated at the level of transcription initiation
- 4.11 Bacterial host chromosome replication is regulated by the DnaA protein and occurs via a θ intermediate
- 4.12 Many bacterial proteins are needed to catalyze chromosome replication
- 4.13 Although many bacteriophages have linear dsDNA genomes, bacterial hosts cannot replicate the ends of linear DNA
- 4.14 T7 bacteriophage genome replication is catalyzed by one of the simplest known replication machines
- 4.15 The λ bacteriophage has naked, complex virions and a large doublestranded DNA genome
- 4.16 Bacteriophage λ can cause lytic or longterm infections
- 4.17 There are three waves of gene expression during lytic λ replication
- 4.18 The \lambda control region is responsible for early gene expression because of its promoters and the Cro and N proteins it encodes -
- 4.19 The λ N antitermination protein controls the onset of delayed-early gene expression 99
- 4.20 The λ Q antitermination protein and Cro repressor protein control the switch to late gene expression
- 4.21 Bacteriophages T7 and λ both have three waves of gene expression but the molecular mechanisms controlling them differ
- 4.22 Bacteriophage ∑ genome replication occurs in two stages, through two different intermediates
- 4.23 Lambda genome replication requires phage proteins O and P and many subverted host proteins

1.24	The abundance of host DnaA protein relative to the amount of phage DNA controls the switch to rolling-circle replication	102
1.25	There are billions of other bacteriophages that regulate gene	100
	expression in various ways	103
1.26	Some bacteriophages have ssDNA, dsDNA, or (+) ssRNA genomes	104
1.27	The replication cycles of ssDNA bacteriophages always include formation of a double-stranded	
	replicative form	104
.28	Bacteriophage $\phi \chi$ 174 is of historical importance	105
.29	Bacteriophage $\phi \chi 174$ has extremely	
13	overlapping protein-coding sequences	105
.30	Bacteriophage $\phi \chi$ 174 proteins are expressed in different amounts	106
.31	A combination of mRNA levels and differential translation accounts for levels of bacteriophage $\phi \chi 174$ protein	
	expression	107
.32	Bacteriophage M13 genome replication is catalyzed by host proteins and occurs via a replicative form	108
.33	Bacteriophage MS2 is a (+) ssRNA virus that encodes four proteins	110
.34	Bacteriophage MS2 protein abundance is controlled by secondary structure	
	in the genome	111
.35	Bacteriophage RdRp enzymes subvert abundant host proteins to create an	
	efficient replicase complex	114
.36	Bacteriophage proteins are common laboratory tools	115
ssen	tial concepts	121
lues	tions	122
urth	er reading	123
	GENE EXPRESSION AND	
	GENOME REPLICATION IN	

GENE EXPRESSION AND GENOME REPLICATION IN THE POSITIVE-STRAND RNA VIRUSES

125

126

127

- 5.1 Class IV virus replication cycles have common gene expression and genome replication strategies
- 5.2 Terminal features of eukaryotic mRNA are essential for translation

CONTENTS IX

5.3	Monopartite Class IV (+) strand RNA viruses express multiple proteins from	120
5.4	a single genome Picornaviruses are models for the	128
	simplest (+) strand RNA viruses	128
5.5	Class IV viruses such as poliovirus encode one or more polyproteins	130
5.6	Class IV viruses such as poliovirus use proteolysis to release small proteins from viral polyproteins	132
5.7	Translation of Class IV virus genomes	132
	occurs despite the lack of a 5' cap	134
5.8	Class IV virus genome replication occurs inside a virus replication	
	compartment	136
5.9	The picornavirus 3D ^{pol} is an RdRp and synthesizes a protein-based primer	137
5.10	Structural features of the viral genome are essential for replication of Class IV	4030
5.11	viral genomes	137
5.11	Picornavirus genome replication occurs in four phases	138
5.12	Flaviviruses are models for simple enveloped (+) strand RNA viruses	141
5.13	The linear (+) strand RNA flavivirus genomes have unusual termini	141
5.14	Enveloped HCV encodes 10 proteins including several with transmembrane	
	segments	142
5.15	Togaviruses are small enveloped viruses with replication cycles more complex	
	than those of the flaviviruses	143
5.16	Four different togavirus polyproteins are found inside infected cells	145
5.17	Different molecular events predominate early and late during togavirus infection	146
5.18	Translation of togavirus sgRNA requires use of the downstream	
	hairpin loop	147
5.19	Suppression of translation termination is necessary for production of the nonstructural p1234 Sindbis virus	
	polyprotein	148
5.20	Sindbis virus uses an unusual	
	mechanism to encode the TF protein	149

- 5.21 A programmed -1 ribosome frameshift is needed to produce the togavirus TF protein
- 5.22 The picornaviruses, flaviviruses, and togaviruses illustrate many common properties among (+) strand RNA viruses 151

.23	Coronaviruses have long (+) strand RNA genomes and novel mechanisms of gene expression and genome replication	152	
.24	Coronaviruses have enveloped spherical virions and encode conserved and	152	
	species-specific accessory proteins	152	
25	Coronaviruses express a nested set of sqRNAs with leader and TRS sequences	153	
26	Coronaviruses use a discontinuous mechanism for synthesis of replicative		
	forms	155	
27	Most coronavirus sgRNA is translated		
	into a single protein	156	
28	Coronaviruses use a leaky scanning mechanism to synthesize		
	proteins from overlapping sequences	156	
29	Coronaviruses may proofread RNA		
	during synthesis	157	
30	Plants can also be infected by Class IV		
	RNA viruses	159	
31	Comparing Class IV viruses reveals		
	common themes with variations	160	
sen	itial concepts	161	
ues	tions	161	
urth	er reading	162	

5

5

5

5

5

5

5

Es 0

Fu

6

150

- GENE EXPRESSION AND **GENOME REPLICATION IN** THE NEGATIVE-STRAND RNA VIRUSES
- 6.1 Study of two historically infamous Class V viruses, rabies and influenza, were instrumental in the development of molecular and cellular virology
- 6.2 The mononegavirus replication cycle includes primary and secondary transcription catalyzed by the viral RdRp
- 6.3 Rhabdoviruses have linear (-) RNA genomes and encode five proteins
- Rhabdoviruses produce five mRNAs 6.4 with 5' caps and polyadenylated 3' tails through a start-stop mechanism
- 6.5 Rhabdovirus genome replication occurs through the use of a complete antigenome cRNP as a template
- 6.6 The paramyxoviruses are mononegaviruses that use RNA editing for gene expression 170

6.7 Filoviruses are filamentous mononegaviruses that encode seven to nine proteins 173 6.8 The filovirus VP30 protein, not found in other mononegaviruses, is required for 175 transcription 6.9 Influenza is an example of an orthomyxovirus 175 Of the 17 influenza A proteins, 9 are 6.10 found in the virion 176 6.11 Orthomyxovirus nucleic acid synthesis occurs in the host cell nucleus, not in 177 the cytoplasm 6.12 The first step of transcription by influenza virus is cap snatching 178 6.13 An influenza cRNP intermediate is used as the template for genome replication 179 6.14 Arenavirus RNA genomes are ambisense 181 6.15 Expression of the four arenavirus proteins reflects the ambisense nature of the genome 182 **Essential concepts** 183 **Ouestions** 184 Further reading 184 GENE EXPRESSION AND GENOME REPLICATION IN THE DOUBLE-STRANDED RNA 185 VIRUSES 7.1 The rotavirus replication cycle includes primary transcription, genome replication, and secondary transcription inside partially intact capsids in the 186 host cytoplasm 7.2 Rotavirus A has a naked capsid with three protein layers enclosing 11 186 segments of dsRNA 188 Rotavirus A encodes 13 proteins 7.3 Synthesis of rotavirus nucleic acids 7.4 occurs in a fenestrated double-layered 188 particle 7.5 Translation of rotavirus mRNA requires NSP3 and occurs in viroplasm formed by NSP2 and NSP5 189 7.6 Rotavirus genome replication precedes 191 secondary transcription

191

191

192

7

Essential concepts

Further reading

Questions

163

163

164

166

167

8	GENE EXPRESSION AND GENOME REPLICATION IN THE DOUBLE-STRANDED DNA VIRUSES	193
8.1	DNA viruses can cause productive lytic infections, cellular transformation, or	
	latent infections	194
8.2	Most Class I animal viruses rely on host transcription machinery for gene expression	194
8.3	Eukaryotic transcription is affected by the state of the chromatin	195
8.4	Eukaryotic capping, splicing, and polyadenylation occur co-transcriptionally	196
8.5	Polyomaviruses are small DNA viruses with early and late gene expression	199
8.6	The SV40 polyomavirus encodes seven proteins in only 5,243 bp of DNA	200
8.7	The synthesis of mRNA in SV40 is controlled by the noncoding control	201
8.8	region Late SV40 transcription is regulated by	201
0.0	both host and viral proteins	202
8.9	Most Baltimore Class I viruses including polyomaviruses manipulate the	
11.9	eukaryotic cell cycle	204
8.10	Most Class I viruses prevent or delay cellular apoptosis	206
8.11	SV40 forces the host cell to express S phase genes and uses large T antigen and host proteins for genome replication	207
8.12	SV40 genome replication requires viral and host proteins to form active DNA replication forks	208
8.13	The papillomavirus replication cycle is tied closely to the differentiation status of its host cell	209
8.14	Human papillomaviruses encode about 13 proteins that are translated from polycistronic mRNA	211
8.15	The long control region of HPV regulates papillomavirus transcription in which pre-mRNA is subjected to alternative splicing	213
8.16	Leaky scanning, internal ribosome entry sites, and translation re-initiation lead	
	to the expression of papillomavirus proteins from polycistronic mRNA	213
8.17	DNA replication in papillomaviruses is linked to host cell differentiation status	215

277

278

278

280

281

282

283

283

284

286

287

287

288

290

290

291

293

295

296

8.18	to manipulate the host cell cycle and	8	8.34	Poxviruses are extremely large dsD viruses that replicate in the host cy
8.19	apoptosis Comparing the small DNA viruses	216	8.35	Many vaccinia virus proteins are associated with the virion itself
	reveals similar economy in coding		8.36	Vaccinia RNA polymerase transcri
	capacity but different mechanisms for			genes in three waves using differ
	gene expression, manipulating the host			transcription activators
	cell cycle, and DNA replication	216	8.37	Vaccinia genome replication requ
8.20	Adenoviruses are large dsDNA viruses with three waves of gene expression	217		the unusual ends of the genome
8.21	Adenoviruses have large naked			sequence
0.21	spherical capsids with prominent spikes		8.38	The synthetic demands on the ho
	and large linear dsDNA genomes	217		make vaccinia a possible anticano
8.22		- 17	-	treatment
0.22	early, and late proteins	218		ntial concepts
8.23			Ques	tions
0.23	The large E1A protein is important for regulating the adenovirus cascade of		Furth	ner reading
	gene expression	220		
8.24	- CERNAR ARCHIGHTER OF CARLED AND THAT AN A CORRELE	220	9	GENE EXPRESSION AND
0.24	discovered through studying adenovirus		1-	GENOME REPLICATION IN
	gene expression	220		
8.25	3	220		THE SINGLE-STRANDED D
6.20	Both host cells and adenovirus rely on alternative splicing to encode			VIRUSES
	multiple proteins using the same DNA		9.1	The ssDNA viruses express their ger
	sequence	221		replicate their genomes in the nucl
8.26	Regulated alternative splicing of a late		9.2	Circoviruses are tiny ssDNA viruse
0.20	adenovirus transcript relies on <i>cis</i> -acting		5.2	circular genomes
	regulatory sequences, on the E4-ORF4		9.3	Although their genomes are shor
	viral protein, and on host splicing		5.5	than an average human gene,
	machinery	222		circoviruses encode at least four pr
8.27	Adenovirus shuts off translation of host		9.4	Both host and viral proteins are n
	mRNA, while ensuring translation of its		5.4	for circovirus genome replication
	own late mRNAs through a ribosome-		9.5	Parvoviruses are tiny ssDNA viruse
	shunting mechanism	224	5.5	with linear genomes having hairp
8.28	DNA replication in adenovirus requires			at both ends
	three viral proteins even though the		9.6	The model parvovirus MVM enco
	genome is replicated in the host cell		510	proteins using alternative splicing
	nucleus	225	9.7	The model parvovirus MVM uses
8.29	Herpesviruses have very large		186	rolling-hairpin mechanism for ger
	enveloped virions and large linear			replication
	dsDNA genomes	228	Essen	tial concepts
8.30	Lytic herpesvirus replication involves		Ques	R hade stores in this called but summaries a bolt of the
	a cascade with several waves of gene	8.15	8.11	
	expression	228	Furth	er reading
8.31	Groups of herpes simplex virus 1			
	proteins have functions relating to the	220	10	GENE EXPRESSION AND
24	timing of their expression	229		GENOME REPLICATION IN
8.32	Waves of gene expression in herpesviruses			THE RETROVIRUSES AND
	are controlled by transcription activation			HEPADNAVIRUSES
	and chromatin remodeling	230	1991	and paramyakensis and the
8.33	Herpesvirus genome replication results	221	10.1	Viral reverse transcriptases have
	in concatamers	231		polymerase and RNase H activity

	Poxviruses are extremely large dsDNA viruses that replicate in the host cytoplasm	231	
	Many vaccinia virus proteins are associated with the virion itself	233	
•	Vaccinia RNA polymerase transcribes genes in three waves using different transcription activators	233	
,	Vaccinia genome replication requires the unusual ends of the genome	255	
	sequence	236	
	The synthetic demands on the host cell make vaccinia a possible anticancer		
	treatment	238	
	tial concepts	238	
	tions	239	
h	er reading	240	
	GENE EXPRESSION AND		
	GENOME REPLICATION IN		
	THE SINGLE-STRANDED DNA VIRUSES	241	
	common themes with variations	241	
	The ssDNA viruses express their genes and replicate their genomes in the nucleus	242	
	Circoviruses are tiny ssDNA viruses with circular genomes	242	
	Although their genomes are shorter than an average human gene,		
	circoviruses encode at least four proteins Both host and viral proteins are needed	243	
	for circovirus genome replication Parvoviruses are tiny ssDNA viruses	244	
	with linear genomes having hairpins at both ends	245	
	The model parvovirus MVM encodes six proteins using alternative splicing	245	
	The model parvovirus MVM uses a rolling-hairpin mechanism for genome		
	replication	246	
	tial concepts	248	
	tions	248	
h	er reading	249	
	GENE EXPRESSION AND		
	GENOME REPLICATION IN THE RETROVIRUSES AND		
		251	

10.2	Retroviruses are enveloped and have RNA genomes yet express their proteins from dsDNA	254	11	ASSEMBLY, RELEASE, AND MATURATION
	ELICIT II MUSIBALE MECHANIS COMPANY COMPANY	234	11.1	The last stages of the virus replication
10.3	Reverse transcription occurs during transport of the retroviral nucleic acid to the nucleus, through			cycle are assembly, release, and maturation
	a discontinuous mechanism	255	11.2	Unlike cells, viruses assemble from their constituent parts
10.4	Retroviral integrase inserts the viral cDNA into a chromosome, forming proviral DNA that can be transcribed		11.3	Virions more structurally complex than TMV also reproduce by assembly, not
	by host Pol II	256		by division
10.5	All retroviruses express eight essential proteins, whereas some such as HIV encode species-specific accessory		11.4	Typical sites of assembly in eukaryotic viruses include the cytoplasm, plasma membrane, and nucleus
10.6	proteins The retroviral LTR sequences interact	259	11.5	Eukaryotic virus assembly must take cellular protein localization into account
	with host proteins to regulate transcription	259	11.6	Capsids and nucleocapsids associate
10.7	The compact retroviral genome is used economically to encode many proteins	255	11.0	with genomes using one of two general strategies
	through the use of polyproteins,		11.7	Assembly of some viruses depends on
	alternative splicing, and translation of polycistronic mRNA	260		DNA replication to provide the energy to fill the icosahedral heads
10.8	The HIV-1 accessory protein TAT is essential for viral gene expression	264	11.8	Assembly of some viruses depends on a packaging motor to fill the icosahedral
10.9	The HIV-1 accessory protein Rev is essential for exporting some viral mRNA from the nucleus	265	11.9	heads Negative RNA viruses provide a model for concerted nucleocapsid assembly
	Retrovirus genome replication is accomplished by host Pol II	265	11.10	To assemble, some viruses require assistance from proteins not found
10.11	HIV-1 is a candidate gene therapy vector for diseases that involve the immune cells normally targeted by HIV	266	11.11	in the virion Viruses acquire envelopes through one of two pathways
10.12	Hepadnaviruses are enveloped and have genomes containing both DNA		11.12	The helical vRNPs of influenza virus assemble first, followed by
10.12	and RNA in an unusual arrangement Hepadnaviruses use reverse	267		envelope acquisition at the plasma membrane
10.15	transcription to amplify their genomes	268	11.13	Some viruses require maturation
10.14	The cccDNA of HBV is not perfectly identical to the DNA in the infecting			reactions during release in order to form infectious virions
10.15	virion	269	11.14	Assembly of HIV occurs at the plasma membrane
10.15	The tiny HBV genome encodes eight proteins through alternative splicing,		11 15	Inhibition of HIV-1 maturation provides
	overlapping coding sequences, and alternative start codons	269	11.15	a classic example of structure-function research in medicine
10.16	HBV genome replication relies upon an elaborate reverse transcriptase		11.16	Release from bacterial cells usually occurs by lysis
	mechanism	270	11 17	Release from animal cells can occur
Essen	tial concepts	274	11.17	by lysis
Quest	TTOOLOGUDD R Ste saury rus union ment	275	11.18	Release from animal cells can occur
	ions	275		by budding

Further reading

Essen	through biting arthropods tial concepts	298	
Quest	tions	299	
Furth	er reading	299	
12	VIRUS-HOST INTERACTIONS		
12	DURING LYTIC GROWTH	301	
12.1	All viruses subvert translation	302	
12.2	Bacteriophages subvert translation indirectly	302	
12.3	Animal viruses have many strategies to block translation of host mRNA	304	
12.4	Animal viruses cause structural changes in host cells referred to as cytopathic effects	306	
12.5	Viruses affect host cell apoptosis	306	
12.6	Some viruses delay apoptosis in order to complete their replication cycles		
	before the host cell dies	308	
12.7	Some viruses subvert apoptosis in order to complete their replication cycles	309	
12.8	Viruses use the ubiquitin system to their advantage	309	
12.9	Viruses can block or subvert the cellular autophagy system	311	
12.10	Viruses subvert or co-opt the misfolded protein response triggered in the		
	endoplasmic reticulum	312	
12.11	Viruses modify internal membranes in order to create virus replication		
3.28	compartments	312	
	tial concepts	315	
Quest		315	
urthe	er reading and an an open easing amod	316	

13 PERSISTENT VIRAL INFECTIONS 317

13.1	Some bacteriophages are temperate and can persist as genomes integrated into their hosts' chromosomes	318
13.2	Bacteriophage λ serves as a model for latency	318
13.3	The amount of stable CII protein in the cell determines whether the phage genome becomes a prophage	320
13.4	Activation of P _{RE} , P _I , and P _{antiQ} by CII results in lysogeny	320
13.5	Stress triggers an exit from lysogeny	322

13.6	Some lysogens provide their bacterial hosts with virulence genes	323
13.7	Prophages affect the survival of their	525
13.7	bacterial hosts	324
13.8	Persistent infections in humans include those with ongoing lytic replication	
	and latent infections	326
13.9	Human immunodeficiency virus causes persistent infections	326
13.10	Human herpesvirus 1 is a model for latent infections	327
13.11	Oncogenic viruses cause cancer through persistent infections	329
13.12	DNA viruses transform cells with oncoproteins that affect the cell cycle and apoptosis	330
13.13	HPV oncoproteins E6 and E7 cause transformation	331
13.14	HPV E6 and E7 overexpression occurs when the virus genome recombines	
	with a host chromosome	332
13.15	Merkel cell polyomavirus is also associated with human cancers	332
13.16	Epstein–Barr virus is an oncogenic herpesvirus	332
13.17	Latency-associated viral proteins are responsible for Epstein–Barr virus- induced oncogenesis	224
13.18	The Kaposi's sarcoma herpesvirus	334
13.18	also causes persistent oncogenic infections	225
13.19	Hepatocellular carcinoma is caused	335
13.15	by persistent lytic viral infections	336
13.20	Retroviruses have two mechanisms by which they can cause cancer	337
13.21	Viral oncoproteins can be used to	
-268	immortalize primary cell cultures	339
13.22	The human virome is largely uncharacterized but likely has effects	246
Ferent	on human physiology	340
Questi	ial concepts	3.41
	ons r reading	341 342
ruithe	a reading	342
	GENER DARA REPORT OF A DAMAGE VALUE	
14	VIRAL EVASION OF INNATE	

14 VIRAL EVASION OF INNATE **HOST DEFENSES**

14.1 Restriction enzymes are a component of innate immunity to bacteriophages 346 14.2 Bacteriophages have counterdefenses

345

against restriction-modification systems 349

14.3	Human innate immune defenses	349	15.5	Professional antige
	operate on many levels	349		degrade exogenou display epitopes in
14.4	The human innate immune system is triggered by pattern recognition	349	15.6	Some viruses evad
14.5	Innate immune responses include		15.7	Lymphocytes that
	cytokine secretion	351		infections have ma
14.6	Interferon causes the antiviral state	351		common
14.7	Some viruses can evade the interferon response	353	15.8	CD4+ helper T lym with viral epitopes
14.8	Neutrophils are active during an innate	202		molecules
14.0	immune response against viruses	357	15.9	Antibodies are solution that bind to extract
14.9	Viruses manipulate immune system communication to evade the net response	257		such as virions
14.10			15.10	
14.10	innate immune response	358		differentiate to pro
14.11	the second second should be a second s			affinity antibodies
	all cells present endogenous antigens		15.11	Viruses have strate subvert the antiboo
	in MHC-I molecules	358	15.12	
14.12	Cells infected by viruses produce and		13.12	crucial for controlli
	display viral antigens in MHC-I	359	15.13	Some viruses can ev
14.13	Viruses have strategies to evade MHC-I presentation of viral antigens	360	15.14	
14.14				evade immune clea
SEAhe	reduced MHC-I display	360		period of time
14.15	The complement system targets		15.15	The immune responserves is a compreh
	enveloped viruses and cells infected	254		antiviral immune re
	by them	361	15.16	
14.16	Some viruses can evade the	362		a lytic virus evades
A Provide A	complement system	502		adaptive immunity
14.17	Viral evasion strategies depend on the coding capacity of the virus	362	COD Farm	replicate
14 10	In vertebrates, if an innate immune			tial concepts
14.10	reaction does not clear an infection,		Quest	
	adaptive immunity comes into play	362	Furthe	er reading
Essent	ial concepts	363		
Questi	ions	364	16	MEDICAL APPLI
urthe	er reading	364		MOLECULAR AN
				VIROLOGY
15	VIRAL EVASION OF ADAPTIVE		16.1	Vaccines are critical
	HOST DEFENSES	365	10.1	of an effective publ
15.1	CRISPR-Cas is an adaptive immune		16.2	Attenuated vaccines
	response found in bacteria	366		immunogenic becau
15.2	Some bacteriophages can evade or	MA	10.7	replicate
	subvert the CRISPR-Cas system	370	16.3	Inactivated vaccines

371

- The human adaptive immune response 15.3 includes cell-mediated and humoral immunity
- The human adaptive immune response 15.4 has specificity because it responds to epitopes

15.5	Professional antigen-presenting cells	
	degrade exogenous antigens and display epitopes in MHC-II molecules	372
15.6	Some viruses evade MHC-II presentation	n 373
15.7	Lymphocytes that control viral	
	infections have many properties in	
	common and regard regula is with A	375
15.8	CD4+ helper T lymphocytes interact with viral epitopes displayed in MHC-II	
	molecules	375
15.9	Antibodies are soluble B-cell receptors	
	that bind to extracellular antigens such as virions	377
15.10	During an antiviral response, B cells	3//
15.10	differentiate to produce higher-	
	affinity antibodies	378
15.11	Viruses have strategies to evade or	076
15.12	subvert the antibody response CD8+ cytotoxic T lymphocytes are	379
15.12	crucial for controlling viral infections	380
15.13	Some viruses can evade the CTL response	381
15.14	Viruses that cause persistent infections	
	evade immune clearance for a long	16.15
	period of time	382
15.15	The immune response to influenza serves is a comprehensive model for	
	antiviral immune responses in general	383
15.16	Influenza provides a model for how	
	a lytic virus evades both innate and	
	adaptive immunity long enough to replicate	386
Essent	ial concepts	387
Quest	ions	388
Furthe	er reading	388
16	MEDICAL APPLICATIONS OF	
	MOLECULAR AND CELLULAR	
		389
16.1		505
16.1	Vaccines are critical components of an effective public health system	390
16.2	Attenuated vaccines are highly	
	immunogenic because they can still	
192	replicate	391
16.3	Inactivated vaccines are composed of nonreplicating virions	392
16.4	Subunit vaccines are composed	
4	of selected antigenic proteins	393
16.5	Although seasonal influenza vaccines	
	are useful, a universal flu vaccine is highly sought after	394
	inginy sought arter	

XVI CONTENTS

16.6	Preventative HIV vaccines are in development	396
16.7	Extreme antigenic variation is a problem for developing an HIV vaccine	398
16.8	An effective HIV vaccine may require stimulating a strong CTL response	398
16.9	Antiviral drugs target proteins unique to viruses and essential for their replication cycle	399
16.10	Many antiviral drugs are nucleoside or nucleotide structural analogs that target the active site of viral	
	polymerases	401
16.11	Drugs to treat influenza target the uncoating and release stages of viral replication	402
16.12	Drugs to treat hepatitis C virus target	
379	the viral polymerase	403
16.13	Drugs to treat HIV target many stages of the virus replication cycle	404
16.14	Viral evolution occurs in response to selective pressure from antiviral drugs	406
16.15	It might be possible to develop bacteriophage therapy to treat people with antibiotic-resistant bacterial	309
	infections	407
16.16	Engineered viruses could in principle be used for gene therapy to treat	15,86
	cancer and other conditions	408
16.17	Gene therapy and oncolytic virus treatments currently in use	410
16.18	Therapeutic applications of CRISPR-Cas	
	technology	415
Essent	ial concepts	416
Questi	ons	417
Further reading		418

17 VIRAL DIVERSITY, ORIGINS, AND EVOLUTION

17.1	The viral world is extremely diverse	420
17.2	Satellite viruses and nucleic acids require co-infection with a virus	
	to spread	421
17.3	Viroids are infectious RNA molecules	
	found in plants	423

17.4	Transposons and introns are subviral entities	122
17.5		423 425
17.5	Viruses have ancient origins Viral hallmark proteins can be used	425
17.0	to trace evolutionary history	425
17.7	Metagenomics will revolutionize	125
351	evolutionary understanding of viruses	427
17.8	Viral genetic diversity arises through	
	mutation and recombination	429
17.9	Genetic diversity among influenza A	
	viruses arises through mutation and recombination	420
17 10		430
17.10	Influenza A spike proteins are particularly diverse	431
17.11	Variations among influenza A viruses	-51
	reflects genetic drift and natural	
	selection	432
17.12	Pandemic influenza A strains have	
13.14	arisen through recombination	433
17.13	New pandemic influenza A strains may be able to arise through mutation	435
17.14	Selective pressures and constraints	
	influence viral evolution	436
17.15	Some viruses and hosts coevolve	438
17.16	Medically dangerous emerging viruses	
	are zoonotic	440
17.17	HIV exhibits high levels of genetic diversity and transferred from apes to	
	humans on four occasions	442
17.18	HIV-1 has molecular features that	
	reflect adaptation to humans	443
17.19	Viruses and subviral entities are	
	common in the human genome	444
17.20	Viruses and subviral entities have	
	strongly affected the evolution of organisms including humans	445
17.21	Virology unites the biosphere	445
	ial concepts	440
Questi	sund have been built all the best attracts	447
	er reading	447
rurtie	arreading	447
GLO	SSARY	449
ANS	WERS	473
INDE	X	487