Contents

Chapter 1 Contexts, Perspectives, and Principles

Plant interactions with the atmosphere, hydrosphere, and geosphere underpin terrestrial ecosystems	1
Schimizing human impact on ecosystems and achieving global food security are significant challenges	3
Proximate and ultimate questions elucidate how and why plants interact with the environment	5
Resources, stressors, and toxins affect plant biomass production and quality	6
Environmental factors that affect plant growth are interacting but independent variables	10
Many reference soil groups are a product of interacting environmental variables	10
Spatial and temporal analyses provide insights into plant responses to environmental variation	11
Plants process information about environmental pariation using signaling networks	14
Deferences in gene expression and in the genes expressed underpin a hierarchy of plant adaptations	14
Environmental plant physiology is ecologically useful in defining plant traits and niches	19
Studying plant-environment interactions can help to increase agricultural efficiency and sustainability	20
Modeling is improving our understanding of plant-	21
Summary	21
Further reading	22

Chapter 2 Light

In plants , ancient photosynthetic systems provide the chemical energy for terrestrial ecosystems	23
Photosystems, cytochromes, and ATP synthases	25
Terrestrial plants have to adapt to a generally high and very variable light regime	28
Plants can adjust quickly to variation in PAR using non-photochemical quenching	31
Plants can adjust electron flows to help them to withstand variable light intensities	34
PSII repair is important in plants that tolerate high light intensities	36
Chloroplast movements can be used to adjust fairly rapidly the amount of light absorbed	37
Photosystems, grana, and thylakoids adapt to	
differences in light regime	39

Leaf optical properties are adapted to long-term variation in light regimes	41
Adjustments in leaf position and plant architecture adapt plants to different light regimes	44
Photoinhibition is most severe in alpine	10
environments	46
Summary	48
Further reading	49

Chapter 3 Carbon Dioxide 51 CO₂ fixation underpins the primary production of biomass 51 Variation in the supply of CO₂ to plants is significant and affected by human activity 53 The regulation of rubisco activity controls CO₂ entry into the Calvin-Benson cycle 56 Oxygenation of RuBP decreases growth but provides rapid metabolic flexibility 58 When there is a sustained low CO₂ supply, C₄ plants maintain a high CO₂:O₂ ratio in the vicinity of rubisco 60 C₃-C₄ intermediates and C₄ plants show distinct responses to chronic differences in the environment 63 Crassulacean acid metabolism adapts plants to chronically difficult CO2-fixation conditions 66 Long-term increased CO2 levels can increase plant growth, but limiting factors can moderate this effect 69 Plant responses to increasing CO₂ levels will affect the hydrological cycle and Earth's climate 72 An understanding of CO₂ fixation by plants is important for sustainable food production and ecosystem conservation 73 75 Summary Further reading 75

Chapter 4 Water

23

Plant-water relations affect physiological processes from a cellular to a global scale	77
Water management is vital for ensuring global food security and minimizing the impact of human activity on the environment	80
Water potential gradients drive water movement, including transpiration in trees over 100 m tall	83
Short-term adjustments of resistance to water flux allow water homeostasis	85

77

viii CONTENTS

water deficit	88
Extended water deficit induces changes in root growth	90
Leaf adaptations aid drought survival and provide alternative ways of capturing water	92
Succulent xerophytes are physiologically decoupled from their chronically arid environments	94
Resurrection plants cope with complete desiccation	95
Interactions between water and other stressors provide important environmental insights	99
Summary	100
Further reading	101

103

140

Chapter 5 Nitrogen

Nitrogen assimilated in plants is vital for the production of biomolecules in terrestrial organisms	103
Artificially fixed nitrogen significantly affects the biosphere and atmosphere	104
The concentration of different forms of soil nitrogen varies significantly	107
Plant nitrogen-transporter uptake capacity is tuned to variation in soil nitrogen supply	111
Plants integrate nitrogen from different sources by converting it to NH_3 for assimilation	113
Whole-plant physiological adjustments help to use different patterns of nitrogen supply	115
Plants adjust their root morphology in response to shortages of nitrogen	116
Symbioses contribute significantly to plant nitrogen uptake in nitrogen-deficient environments	117
Carnivorous plants are mixotrophs that can obtain nitrogen opportunistically from an erratic	
supply	123
Summary	126
Further reading	127
Chapter 6 Phosphorus	129
Phosphorus availability often controls terrestrial biomass production and ecosystem processes	129
Current phosphorus fertilizer regimes are unsustainable, inefficient, and often polluting	131
Phosphorus homeostasis is a key challenge for plants in terrestrial ecosystems	133
Plants have numerous transporters that regulate uptake and translocation	135
Plants can increase the availability of inorganic phosphorus and the breakdown of organic phosphorus	136

Plants can adjust their root system morphology to optimize phosphorus uptake

131	Chapter 8	Temperatu
	Plants are static	poikilotherms, se
133	variation in temp	perature is a cons

Chapter 8 Temperature	175
Plants are static poikilotherms, so significant variation in temperature is a considerable	175
Changing global temperature regimes are affecting	115
plant growth, development, and distribution	177
Plants detect temperature changes via physical changes in numerous biomolecules	180
Chilling freezing and heat initiate changes in key	

C 1g, I components of different signaling pathways 183

Mycorrhizas are major adaptations for phosphorus acquisition in low-phosphorus environments	142
Some species use cluster root systems to intensively mine phosphorus from the soil	146
Carnivorous plants digest organic phosphorus using phosphatases	150
Summary	150
Further reading	151

Chapter 7	Essential and	
Beneficial	Elements	
TT	to see her data as in a the sail for an	

153

Terrestrial plants evolved to mine the soil for an	otembre
ancient suite of available elements	153
The availability of essential nutrients limits biomass production and quality in many	
ecosystems	156
Elemental homeostasis is achieved using both ion-binding compounds and transport proteins	157
Plants adjust to a variable supply of micronutrients by overexpressing homeostatic	150
components	159
Beneficial elements help many plant species to	160
cope with a wide range of abiotic stresses	100
Sub-optimal sulfur availability can inhibit the	
compounds	162
Potassium can limit ecosystem production, but	
its use in fertilizer has a moderate environmental impact	164
Calcium deficiency can occur in a variety of plants, and magnesium deficiency in a variety	
of crops	166
Adaptations of root anatomy and morphology	
deficiency	168
Many plants use symbioses with fungi and	
changes in rhizosphere microflora to aid nutrient	
uptake	170
Ionomics	171
Summary	173
Further reading	174
Chapter 8 Temperature	175
Plants are static poikilotherms, so significant variation in temperature is a considerable	

CONTENTS

In some plants, chilling temperatures can induce an acclimation response based on the CBF regulon	184
Adaptation to non-optimal temperature necessitates maintaining membranes in the liquid-crystal state	186
Freezing-tolerant plants produce cryoprotectants and osmoprotectants	188
Heat-tolerant plants have protein curation mechanisms adapted to increase the rate of protein repair	191
Anatomical and morphological adaptations of leaves aid plant tolerance of prolonged cold and heat	194
Temperature-induced physiological changes trigger developmental and phenological responses	198
Summary	199
Further reading	199
Chapter 9 Salinity	201
Terrestrial plants are descended from freshwater algae, so saline water is generally toxic to them	201
Plant responses to salinity are important in irrigated agriculture and in salt marshes and mangrove swamps	204
Exposure to salt induces osmotic and ionic stresses in plants	208
Sodium can enter plants via symplastic and apoplastic pathways, but can be removed from the cytoplasm	211
Salt-tolerant plants compartmentalize sodium, and halophytes also control potassium:sodium ratios	213
At high salinity, halophytes synthesize specialized metabolites in order to adapt to especial challenges	215
Salt tolerance in crops has been increased by manipulating biochemical and physiological	210
traits	217
Halophytes that face severe osmotic stresses have morphological and physiological adaptations	219
Some halophytes use specialized organs to excrete sodium chloride from their leaves	221
Mangrove and salt-marsh plants tolerate waterlogging and salinity	223
Summary	224
Further reading	225
Chapter 10 Soil pH	227

Soil pH affects the growth of both wild and domesticated plants

227

229

Soil pH is operationally defined and human activities are affecting it on a global scale

Plant cells have multiple mechanisms for buffering cytosolic pH 233 Acid soils contain high solution concentrations of ions that are toxic to plant cells 234 Some plants resist the effects of moderate soil acidity by excluding aluminum from the cytoplasm 237 For many plants on acid soils, mycorrhizal associations increase aluminum resistance 240 On very acidic soils, some plants take up and 241 compartmentalize aluminum Basic soils are low in important nutrients and 243 induce characteristic symptoms in plants Some plants have adapted to scavenge iron, zinc, and manganese from basic soils 246 Nicotianamine aids iron homeostasis, and in 247 grasses evolved into root exudates that chelate iron Ecologically important iron and zinc deficiency responses are finding important agricultural uses 249 250 Summary Further reading 251

Chapter 11 Flooding

Flooding is a significant variable in both unmanaged and managed terrestrial ecosystems	253
Human activity is adversely affecting wetlands and increasing the incidence of flooding	255
Waterlogged soils are low in oxygen and some nutrients, but high in toxins	255
Soil waterlogging rapidly induces hypoxia, cellular acidosis, and decreased water uptake	258
Physiological adjustments enable some plants to withstand soil waterlogging for short periods	259
Ethylene signaling is central to plant responses to excess water	261
In many plants, waterlogging-induced hypoxia induces changes in root anatomy	262
Wetland plants form extensive constitutive aerenchyma and adapt morphologically to flooding	266
In some flooded soils, pneumatophores help woody plants to aerate their roots	268
The adaptations of wetland plants often produce oxidized rhizospheres	269
Some plants can adapt to submergence of their shoots	271
Emergent aquatic macrophytes can force oxygen down through organs buried deep in anoxic mud	273
Some aquatic macrophytes are adapted to living permanently submerged	275
Summary	275
Further reading	276

ix

253

CONTENTS x

Chapter 12	Inorganic Toxins	279	Summary	
A few reactive eler and many non-ess	nents are essential, but they sential elements can also		Further reading	
be toxic		279	Chapter 14 Air Pol	
Human activity is	significantly increasing the		Chapter 14 All Pol	
concentrations of ecosystems	inorganic toxins in the Earth's	281	that interacts with the atmosp	
Homeostatic mecl translocation of re	nanisms control the uptake and active elements in plants	284	Adverse effects of air pollution important in the twenty-first of	
Exposure to inorga and reproduction	anic toxins decreases growth via physiological and genetic	000	The deposition of air pollutan on the properties of plants an	
Amplified homeou	tatis mashenisms in the roots	200	Plants can assimilate some su	
of some species p	roduce a metal-tolerant		capacity	
physiology	mese from basic soils	292	Direct uptake of gaseous reac	
Some plants have	the capacity to minimize the		can affect plant growth and ed	
uptake of toxins fr	om high external concentrations	295	Semi-volatile and volatile orga can be absorbed by and release	
Some plants can h	yperaccumulate inorganic			
toxins in their sho	ots	296	Chronic effects of ozone on te	
Chronic exposure	to toxins in metalliferous		will be significant in the twen	
ecosystems provid	les some unique biological	300	Particulates filtered by plants	
Control of soil to	plant transfer of inorganic	500	atmosphere can affect their gi	
toxins is useful in	agriculture and		Plants can be used to monitor	
phytoremediation		301	quanty	
Summary		303	Summary	
Further reading		303	Further reading	
Chapter 13	Organic Toyins	205	Chapter 15 Synop:	
Chapter 15	organic toxins	305	Plant-environment interaction	
functional groups	the reactivity of many organic	305	role in determining the bound effects in Earth systems	
Synthetic organic	compounds underpin modern		The understanding of plant st	
life but can have a	significant environmental	000	mechanisms can be extended	
impact	ionality of a contract to bland theory	308	with other organisms	
The entry of organ	chemical properties	300	Our understanding of the imp	
Organic toxine olic	it reactive and perhaps also	309	variation in plant-environmen	
proactive stress res	sponses in plants	313	and scale of variation	
In plant cells, man	y organic toxins can be		Understanding how plant stre	
transformed enzym	natically	315	will provide insights about the	
In some plants, or	ganic toxins and their		interface	
transformation pro	oducts can be deactivated by	u segos a	Understanding plant-environ	
conjugation		317	helps us to confront global cha	
In some plants, co.	njugated organic toxins can be	210	Further reading	
Non target site he	rbicido registen eo con evolvo	519		
from xenobiotic de	etoxification mechanisms	320	Abbreviations list	
Target-site resistar	ce helps plants to adapt to	Iddgborn B	Cleaning alabai terminentari	
catastrophic expos	sure to herbicides	323	Glossary	
Plants enhance the	e bioremediation of water and		Index	
soils contaminated	l with organic xenobiotics	324		
Manipulation of pl	ant tolerance of organic toxins	Summary		
is of increasing imp	portance	327	Contraction of the second and here	

Chapter 14 Air Pollutants	331
Plants are dependent on an extensive surface area that interacts with the atmosphere	331
Adverse effects of air pollution on plants will be important in the twenty-first century	334
The deposition of air pollutants on plants depends on the properties of plants and pollutants	336
Plants can assimilate some sulfur dioxide, but anthropogenic deposition rates can exceed this capacity	337
Direct uptake of gaseous reactive nitrogen species can affect plant growth and ecosystem dynamics	339
Semi-volatile and volatile organic compounds can be absorbed by and released from vegetation	342
Chronic effects of ozone on terrestrial plants will be significant in the twenty-first century	345
Particulates filtered by plants from the atmosphere can affect their growth	348
Plants can be used to monitor and manage air quality	350
Summary	351
Further reading	352

329 329

sis and Outlook 355

effects in Earth systems355The understanding of plant stress response mechanisms can be extended by comparisons with other organisms356Our understanding of the importance of variation in plant-environment interactions can be extended by modeling that includes the pattern and scale of variation358Understanding how plant stress responses evolved will provide insights about the plant-environment interface359Understanding plant-environment interactions helps us to confront global challenges361Further reading362Abbreviations list363Glossary365Index378	Pla	ant-environment interactions play a significant le in determining the boundaries of non-linear	
The understanding of plant stress response mechanisms can be extended by comparisons with other organisms356Our understanding of the importance of variation in plant-environment interactions can 	eff	fects in Earth systems	355
Our understanding of the importance of variation in plant-environment interactions can be extended by modeling that includes the pattern and scale of variation358Understanding how plant stress responses evolved will provide insights about the plant-environment interface359Understanding plant-environment interactions helps us to confront global challenges361Further reading362Abbreviations list363Glossary365Index378	Th me wi	ne understanding of plant stress response echanisms can be extended by comparisons ith other organisms	356
Understanding how plant stress responses evolved will provide insights about the plant-environment interface359Understanding plant-environment interactions helps us to confront global challenges361Further reading362Abbreviations list363Glossary365Index378	Ou va be an	ur understanding of the importance of riation in plant–environment interactions can e extended by modeling that includes the pattern ad scale of variation	358
Understanding plant-environment interactions helps us to confront global challenges361Further reading362Abbreviations list363Glossary365Index378	Un wi int	nderstanding how plant stress responses evolved Il provide insights about the plant–environment terface	359
Further reading362Abbreviations list363Glossary365Index378	Un he	nderstanding plant-environment interactions Plps us to confront global challenges	361
Abbreviations list363Glossary365Index378	Fu	urther reading	362
Glossary 365 Index 378	At	bbreviations list	363
Index 378	GI	lossary	365
	In	dex	378
in off is operationally before and build build and a subset and the Second and the second sec		ing, freeding, and and find the berthely significant	