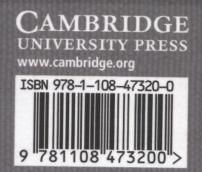
'In recent years the methods of homotopy theory have seen increasingly wide applications in mathematics, and the framework of abstract homotopy theory has been found to be an important lens through which to view many mathematical structures. This book offers a single, self-contained place to learn about the extensive modern facets of abstract homotopy theory. Readers will appreciate Cisinski's thoughtful choice of details and his carefully articulated philosophical point of view. This is an excellent resource for mathematicians experiencing first contact with the subject and for more seasoned researchers in the area.'

Michael Hopkins, Harvard University

'This book is a window into the new field of mathematics emerging from the convergence of category theory and homotopy theory. It widens and deepens the extension from category theory into quasi-categories with the addition of a new theory of presheaves inspired by type theory and a new theory of localisation; it further proposes an extension of homotopical algebra to quasi-categories, offers new applications, and brings important simplification to earlier works. It is an excellent introduction to the subject and may be used for an advanced course.'


André Joyal, Université du Québec à Montréal

'Denis-Charles Cisinski offers a masterful introduction to the world of ∞ -categories, illustrating the necessary intuition all throughout. A complete and clear exposition of the foundations leads naturally to a full course teaching us how to handle all aspects of homotopical algebra within the theory.'

Carlos Simpson, CNRS, Université Côte d'Azur

Cambridge Studies in Advanced Mathematics

EDITORIAL BOARD Béla Bollobás University of Memphis William Fulton University of Michigan Frances Kirwan University of Oxford Peter Sarnak Princeton University Barry Simon California Institute of Technology Burt Totaro University of California, Los Angeles

Prefa	ice	page ix	
Prelu	Prelude		
1.1	Presheaves	1	
1.2	The Category of Simplicial Sets	7	
1.3	Cellular Filtrations	.9	
1.4	Nerves	14	
1.5	Definition of ∞-Categories	19	
1.6	The Boardman–Vogt Construction	21	
Basi	e Homotopical Algebra	27	
2.1	Factorisation Systems	28	
2.2	Model Categories	33	
2.3	Derived Functors	41	
2.4	Model Structures ex Nihilo	50	
2.5	Absolute Weak Equivalences	68	
The	Homotopy Theory of ∞-Categories	72	
3.1	Kan Fibrations and the Kan–Quillen Model Structure	73	
3.2	Inner Anodyne Extensions	88	
3.3	The Joyal Model Category Structure	92	
3.4	Left or Right Fibrations, Joins and Slices	98	
3.5	Invertible Natural Transformations	106	
3.6	∞-Categories as Fibrant Objects	112	
3.7	The Boardman-Vogt Construction, Revisited	116	
3.8	Serre's Long Exact Sequence	120	
3.9	Fully Faithful and Essentially Surjective Functors	130	
Pres	Presheaves: Externally		
4.1	Catégories Fibrées en ∞-Groupoïdes	136	
4.2	Mapping Spaces as Fibres of Slices	144	

4.3	Final Objects	149
4.4	Grothendieck Base Change Formulas and Quillen's	
	Theorem A	155
4.5	Fully Faithful and Essentially Surjective Functors,	
	Revisited	172
4.6	Locally Constant Functors and Quillen's Theorem B	175
Presh	eaves: Internally	183
5.1	Minimal Fibrations	184
5.2	The Universal Left Fibration	195
5.3	Homotopy Classification of Left Fibrations	204
5.4	Rectification of Morphisms	216
5.5	Bivariant Model Category Structures	225
5.6	The Twisted Diagonal	237
5.7	Locally Small ∞-Categories	242
5.8	The Yoneda Lemma	248
Adjoi	nts, Limits and Kan Extensions	260
6.1	Adjoints	261
6.2	Limits and Colimits	274
6.3	Extensions of Functors by Colimits	282
6.4	Kan Extensions	290
6.5	The Cartesian Product	296
6.6	Fibre Products	304
6.7	Duality	312
Homo	otopical Algebra	316
7.1	Localisation	319
7.2	Calculus of Fractions	328
7.3	Constructions of Limits	339
7.4	Finite Direct Diagrams	354
7.5	Derived Functors	366
7.6	Equivalences of ∞-Categories with Finite Limits	382
7.7	Homotopy Completeness	392
7.8	The Homotopy Hypothesis	396
7.9	Homotopy Limits as Limits	402
7.10	Mapping Spaces in Locally Small Localisations	409
7.11	Presentable ∞-Categories	413
Biblio	ography	421
Notati	ion	426
Index		428