Preface

1 Useful formulae and relationships

1.1	Relationships for triangles	1
1.2	Trigonometric relationships	5
1.3	The binomial expansion (theorem)	8
1.4	The exponential e	13
1.5	Natural logarithms	15
1.6	Two-dimensional coordinate systems	17
	PROBLEMS	18

2 Dimensions and dimensional analysis

2.1	Basic units and dimensions	20
2.2	Dimensional homogeneity	23
2.3	Dimensional analysis	24
2.4	Electrical and magnetic units	27
	PROBLEMS	28

3 Sequences and series

3.1	Arithmetic series	29
3.2	Geometric series	30
3.3	Harmonic series	31
3.4	Tests for convergence	32
3.5	Power series	33
	PROBLEMS	34

xix

4 Differentiation

4.1	The basic idea of a derivative	35
4.2	Chain rule	37
4.3	Product rule	39
4.4	Quotient rule	41
4.5	Maxima, minima, and higher-order derivatives	42
4.6	Expressing e^x as a power series in x	46
4.7	Taylor's theorem	48
	PROBLEMS	51

5 Integration

5.1	Indefinite and definite integrals	53
5.2	Techniques of evaluating integrals	54
5.3	Substitution method	55
5.4	Partial fractions	58
5.5	Integration by parts	61
5.6	Integrating powers of $\cos x$ and $\sin x$	63
5.7	The definite integral: area under the curve	65
	PROBLEMS	69

6 Complex numbers

6.1	Definition of a complex number	70
6.2	Argand diagram	72
6.3	Ways of describing a complex number	73
6.4	De Moivre's theorem	74
6.5	Complex conjugate	78
6.6	Division and reduction to real-plus-imaginary form	79
6.7	Modulus-argument form as an aid to integration	80
6.8	Circuits with alternating currents and voltages	81
	PROBLEMS	85

7 Ordinary differential equations

7.1	Types of ordinary differential equation	86
7.2	Separation of variables	88
7.3	Homogeneous equations	89
7.4	The integrating factor	91
7.5	Linear constant-coefficient equations	94
7.6	Simple harmonic motion	94
7.7	Damped simple harmonic motion	96
7.8	Forced vibrations	99
7.9	An LCR circuit	102
	PROBLEMS	104

8 Matrices I and determinants

8.1	Definition of a matrix	106
8.2	Operations of matrix algebra	107
8.3	Types of matrix	108
8.4	Applications to lens systems	110
8.5	Application to special relativity	115
8.6	Determinants	117
8.7	Types of determinant	121
8.8	Inverse matrix	122
8.9	Linear equations	124
	PROBLEMS	126

9 Vector algebra

9.1	Scalar and vector quantities	128
9.2	Products of vectors	130
9.3	Vector representations of some rotational quantities	134
9.4	Linear dependence and independence	135
9.5	A straight line in vector form	137
9.6	A plane in vector form	139
9.7	Distance of a point from a plane	141
9.8	Relationships between lines and planes	143
9.9	Differentiation of vectors	145

9.10	Motion	under a	central	force

PROBLEMS

10 Conic sections and orbits

10.1	Kepler and Newton	152
10.2	Conic sections and the cone	153
10.3	The circle and the ellipse	154
10.4	The parabola	157
10.5	The hyperbola	158
10.6	The orbits of planets and Kepler's laws	160
10.7	The dynamics of orbits	163
10.8	Alpha-particle scattering	165
	PROBLEMS	169

11 Partial differentiation

11.1	What is partial differentiation?	170
11.2	Higher partial derivatives	172
11.3	The total derivative	173
11.4	Partial differentiation and thermodynamics	176
11.5	Taylor series for a function of two variables	179
11.6	Maxima and minima in a multidimensional space	181
	PROBLEMS	183

12 Probability and statistics

12.1	What is probability?	185
12.2	Combining probabilities	186
12.3	Making selections	187
12.4	The birthday problem	189
12.5	Bayes' theorem	190
12.6	Too much information?	191
12.7	Mean; variance and standard deviation; median	192
12.8	Combining different estimates	196
	PROBLEMS	199

13 Coordinate systems and multiple integration

13.1	Two-dimensional coordinate systems	201
13.2	Integration in a rectangular Cartesian system	201
13.3	Integration with polar coordinates	205
13.4	Changing coordinate systems	206
13.5	Three-dimensional coordinate systems	207
13.6	Integration in three dimensions	210
13.7	Moments of inertia	214
13.8	Parallel-axis theorem	218
13.9	Perpendicular-axis theorem	219
	PROBLEMS	220

14 Distributions

14.1	Kinds of distribution	221
14.2	Firing at a target	222
14.3	Normal distribution	225
14.4	Binomial distribution	229
14.5	Poisson distribution	235
	PROBLEMS	237

15 Hyperbolic functions

15.1	Definitions	239
15.2	Relationships linking hyperbolic functions	241
15.3	Differentiation of hyperbolic functions	242
15.4	Taylor expansions of sinh x and cosh x	242
15.5	Integration involving hyperbolic functions	244
15.6	Comments about analytical functions	245
	PROBLEMS	246

16 Vector analysis

16.1	Scalar and vector fields	248
16.2	Gradient (grad) and del operators	249
16.3	Conservative fields	251

16.4	Divergence (div)	255
16.5	Laplacian operator	259
16.6	Curl of a vector field	260
16.7	Maxwell's equations and the speed of light	263
	PROBLEMS	264

17 Fourier analysis

17.1	Signals			265
17.2	The nature of signals			266
17.3	Amplitude-frequency diagrams			269
17.4	Fourier transform			271
17.5	The	δ-function,	δ(x)	280
17.6	Inverse Fourier trans	form		282
17.7	Several cosine signa	lls		283
17.8	Parseval's theorem			284
17.9	Fourier series			286
17.10	Determination of the Fourier coefficients a_0 , { a_n , and { b_n }			293
17.11	Fourier or waveform	synthesis		296
17.12	Power in periodic signals			298
17.13	Complex form for the Fourier series			300
17.14	Amplitude and phas	e spectrum		301
17.15	Alternative variables	for Fourier analysis		302
17.16	Applications in phys	lics		303
17.17	Summary			305
	PROBLEMS			306

18 Introduction to digital signal processing

18.1	More on sampling	309
18.2	Discrete Fourier transform (DFT)	316
18.3	Some concluding remarks	326
	PROBLEMS	327

19 Numerical methods for ordinary differential equations

19.1	The need for numerical methods	329
19.2	Euler methods	329

19.3	Runge-Kutta method	332
19.4	Numerov method	335
	PROBLEMS	336

20 Applications of partial differential equations

20.1	Types of partial differential equation	337
20.2	Finite differences	338
20.3	Diffusion	340
20.4	Explicit method	342
20.5	The Crank-Nicholson method	344
20.6	Poisson's and Laplace's equations	347
20.7	Numerical solution of a hot-plate problem	348
20.8	Boundary conditions for hot-plate problems	350
20.9	Wave equation	352
20.10	Finite-difference approach for a vibrating string	354
20.11	Two-dimensional vibrations	356
	PROBLEMS	357

21 Quantum mechanics I: Schrodinger wave equation and observations

21.1	Transition from classical to modern physics: a brief history	359
21.2	Intuitive derivation of the Schrodinger wave equation	362
21.3	A particle in a one-dimensional box	364
21.4	Observations and operators	367
21.5	A square box and degeneracy	370
21.6	Probabilities of measurements	373
21.7	Simple harmonic oscillator	375
21.8	Three-dimensional simple harmonic oscillator	379
21.9	The free particle	381
21.10	Compatible and incompatible measurements	383
21.11	A potential barrier	385
21.12	Tunnelling	388
21.13	Other methods of solving the TISWE	389
	PROBLEMS	394

22 The Maxwell-Boltzmann distribution

22.1	Deriving the Maxwell-Boltzmann distribution	395
22.2	Retention of a planetary atmosphere	398
22.3	Nuclear fusion in stars	400
	PROBLEMS	404

23 The Monte Carlo method

23.1	Origin of the method	405
23.2	Random walk	406
23.3	A simple polymer model	409
23.4	Uniform distribution within a sphere and random directions	411
23.5	Generation of random numbers for non-uniform deviates	412
23.6	Equation of state of a liquid	417
23.7	Simulation of a fluid by the Monte Carlo method	420
23.8	Modelling a nuclear reactor	425
23.9	Description of a simple model reactor	428
23.10	A cautionary tale	431
	PROBLEMS	431

24 Matrices II

24.1	Population studies	433
24.2	Eigenvalues and eigenvectors	435
24.3	Diagonalization of a matrix	437
24.4	A vibrating system	438
	PROBLEMS	443

25 Quantum mechanics II: Angular momentum and spin

25.1	Measurement of angular momentum	444
25.2	The hydrogen atom	450
25.3	Electron spin	456
25.4	Many-electron systems	462
	PROBLEMS	465

26 Sampling theory

26.1	Samples	466
26.2	Sampling proportions	469
26.3	The significance of differences	471
	PROBLEMS	476

27 Straight-line relationships and the linear correlation coefficient

27.1	General considerations	478
27.2	Lines of regression	481
27.3	A numerical application	483
27.4	The linear correlation coefficient	483
27.5	A general least-squares straight line	486
27.6	Linearization of other forms of relationship	492
	PROBLEMS	494

28 Interpolation

28.1	Applications of interpolation	497
28.2	Linear interpolation	498
28.3	Parabolic interpolation	501
28.4	Gauss interpolation formula	502
28.5	Cubic spline interpolation	502
28.6	Multidimensional interpolation	505
28.7	Extrapolation	507
	PROBLEMS	507

29 Quadrature

29.1	Definite integrals	508
29.2	Trapezium method	508
29.3	Simpson's method (rule)	511
29.4	Romberg method	513
29.5	Gauss quadrature	515
29.6	Multidimensional quadrature	518

29.7	Monte Carlo integration	520
	PROBLEMS	521

30 Linear equations

30.1	Interpretation of linearly dependent and incompatible equations	522
30.2	Gauss elimination method	525
30.3	Conditioning of a set of equations	526
30.4	Gauss-Seidel method	527
30.5	Homogeneous equations	528
30.6	Least-squares solutions	529
30.7	Refinement procedures using least squares	532
	PROBLEMS	534

31 Numerical solution of equations

31.1	The nature of equations	535
31.2	Fixed-point iteration method	536
31.3	Newton-Raphson method	538
	PROBLEMS	540

32 Signals and noise

32.1	Introduction	541
32.2	Signals, noise, and noisy signals	543
32.3	Mathematical and statistical description of noise	546
32.4	Auto- and cross-correlation functions	550
32.5	Detection of signals in noise	562
32.6	White noise	565
32.7	Concluding remarks	567
	PROBLEMS	569

33 Digital filters

33.1	Introduction	571
33.2	Fourier transform methods	572

33.3	Constant-coefficient digital filters	576
33.4	Other filter design methods	588
33.5	Summary of main results and concluding remarks	588
	PROBLEMS	589

34 Introduction to estimation theory

34.1	Introduction	591
34.2	Estimation of a constant	592
34.3	Taking into account the changes in the underlying model	596
34.4	Further methods	603
34.5	Concluding remarks	604
	PROBLEMS	605

35 Linear programming and optimization

35.1	Basic ideas of linear programming	607
35.2	Simplex method	611
35.3	Non-linear optimization; gradient methods	613
35.4	Gradient method for two variables	614
35.5	A practical gradient method for any number of variables	615
35.6	Optimization with constraints - the Lagrange multiplier method	618
	PROBLEMS	621

36 Laplace transforms

36.1	Defining the Laplace transform	
36.2	Inverse Laplace transforms	
36.3	Solving differential equations with Laplace transforms	625
36.4	Laplace transforms and transfer functions	628
	PROBLEMS	634

37 Networks

37.1	Graphs and networks	635
37.2	Types of network	635

37.3	Finding cheapest paths	640
37.4	Critical path analysis	643
	PROBLEMS	645

38 Simulation with particles

38.1	Types of problem	647
38.2	Binary systems	648
38.3	An electron in a magnetic field	651
38.4	/V-body problems	653
38.5	Molecular dynamics	656
38.6	Modelling plasmas	657
38.7	Collisionless particle-in-cell model	664
	PROBLEMS	670

39 Chaos and physical calculations

39.1	The nature of chaos	672
39.2	An example from population studies	673
39.3	Other aspects of chaos	677
	PROBLEM	680

Appendices		681
Appendix 1	Table of integrals	683
Appendix 2	Inverse Fourier transform	683
Appendix 3	Fourier transform of a sampled signal	685
Appendix 4	Derivation of the discrete and inverse discrete	
	Fourier transforms	687
Appendix 5	Program OSCILLATE	689
Appendix 6	Program EXPLICIT	689
Appendix 7	Program HEATCRNI	690
Appendix 8	Program SIMPLATE	690
Appendix 9	Program STRING 1	691
Appendix 10	Program DRUM	692
Appendix 11	Program SHOOT	693
Appendix 12	Program DRUNKARD	694
Appendix 13	Program POLYMER	694
Appendix 14	Program METROPOLIS	696
Appendix 15	Program REACTOR	697
Appendix 16	Program LESLIE	698
Appendix 17	Eigenvalues and eigenvectors of Hermitian matrices	699

Appendix 18	Distance of a point from a line	701
Appendix 19	Program MULGAUSS	701
Appendix 20	Program MCINT	702
Appendix 21	Program GS	703
Appendix 22	Second moments for uniform and Gaussian noise	704
Appendix 23	Convolution theorem	705
Appendix 24	Output from a filter when the input is a cosine	706
Appendix 25	Program GRADMAX	707
Appendix 26	Program NETWORK	708
Appendix 27	Program GRAVBODY	709
Appendix 28	Program ELECLENS	709
Appendix 29	Program CLUSTER	710
Appendix 30	Program FLUIDYN	711
Appendix 31	Condition for collisionless PIC	712
Appendix 32	Program PLASMA1	714
References a	nd further reading	715
Solutions to e	exercises and problems	717
Index		779