	1.1	Spaces of Integrable, Absolutely Continuous, and Continuous Func-	
		tions	1
	1.2	Generalized Functions	6
	1.3	Fourier Transforms	
	1.4	Laplace and Mellin Transforms	.18
	1.5	The Gamma Function and Related Special Functions	24
	1.6	Hypergeometric Functions	27
	1.7	Bessel Functions	.32
	1.8	Classical Mittag-Leffler Functions	.40
	1.9	Generalized Mittag-Leffler Functions	.45
	1.10	Functions of the Mittag-Leffler Type	.49
	1.11	Wright Functions	.54
		The H-Function	
	1.13	Fixed Point Theorems	.67
)	FR A	ACTIONAL INTEGRALS AND FRACTIONAL	
		RIVATIVES	69
	2.1	Riemann-Liouville Fractional Integrals and Fractional Deri-	
		vatives	.69
	2.2	Liouville Fractional Integrals and Fractional Derivatives on the Half-	
		Axis	.79
	2.3	Liouville Fractional Integrals and Fractional Derivatives on the Real	
		Axis	
	2.4	Caputo Fractional Derivatives	.90
	2.5	Fractional Integrals and Fractional Derivatives of a Function with	0.0
		Respect to Another Function	.99
	2.6	Erdelyi-Kober Type Fractional Integrals and Fractional Deriva-	105
		tives	.105
	2.7	tives	110
	2.7	tives	
	2.7	tives	110 .121
	2.7 2.8 2.9	tives. Hadamard Type Fractional Integrals and Fractional Derivatives. Grünwald-Letnikov Fractional Derivatives. Partial and Mixed Fractional Integrals and Fractional Derivatives.	110 .121 .123
	2.7 2.8 2.9 2.10	tives	110 .121 .123 .127

3			RY FRACTIONAL DIFFERENTIAL EQUATIONS ICE AND UNIQUENESS THEOREMS	S. 135
			-	.135
	3.1		luction and a Brief Overview of Results	.133
	3.2		of Summable Functions	.144
		3.2.1	Equivalence of the Cauchy Type Problem and the Volterra	.144
		3.2.1	Integral Equation	1.45
		3.2.2	Existence and Uniqueness of the Solution to the Cauchy Type	.173
		3.2.2	Problem	148
		3.2.3	The Weighted Cauchy Type Problem	
		3.2.4	Generalized Cauchy Type Problems	
			Cauchy Type Problems for Linear Equations	
		3.2.6		
	3.3		ions with the Riemann-Liouville Fractional Derivative in the	.100
	5.5		of Continuous Functions. Global Solution	.162
		3.3.1	Equivalence of the Cauchy Type Problem and the Volterra	.102
			Integral Equation	163
		3.3.2	Existence and Uniqueness of the Global Solution to the	
			Cauchy Type Problem	164
		3.3.3	The Weighted Cauchy Type Problem	
		3.3.4	Generalized Cauchy Type Problems	168
		3.3.5	Cauchy Type Problems for Linear Equations	170
		3.3.6	More Exact Spaces	
		3.3.7	Further Examples	.177
	3.4	Equat	ions with the Riemann-Liouville Fractional Derivative in the	
		Space	of Continuous Functions. Semi-Global and Local Solutions .	182
		3.4.1	The Cauchy Type Problem with Initial Conditions at the	
			Endpoint of the Interval. Semi-Global Solution	.183
		3.4.2	The Cauchy Problem with Initial Conditions at the Inner	
			Point of the Interval. Preliminaries	_186
		3.4.3	Equivalence of the Cauchy Problem and the Volterra Integral	
			Equation	.189
		3.4.4	The Cauchy Problem with Initial Conditions at the Inner	
			Point of the Interval. The Uniqueness of Semi-Global and	
		2.4.	Local Solutions	191
	2.5	3.4.5	A Set of Examples	196
	3.5		ions with the Caputo Derivative in the Space of Continuously	100
			entiable Functions.	.198
		3.5.1	The Cauchy Problem with Initial Conditions at the Endpoint of the Internal Clobal Solution	100
		3.5.2	of the Interval. Global Solution	199
		3.3.2	Inner Points of the Interval. Semi-Global and Local	
			Solutions	205
		3.5.3	Illustrative Examples	
		0.0.0	innon mire immirpres	.207

	3.6			ne Hadamard Fractions			
4		THODS		EXPLICITLY QUATIONS	SOLVING	FRACTIONAL	221
	4.1						221
	7.1	4.1.1	The Cauc	hy Type Problems nn-Liouville Frac	for Differentia	l Equations with	
		4.1.2		chy Problems for			. 228
		4.1.3	The Cauc	hy Problems for ractional Derivat	Differential E	quations with the	
		4.1.4		hy Type Problems l Fractional Der			
	4.2	Compo		ethod			
		4.2.1		ies			
		4.2.2		onal Relations			
		4.2.3		eous Differential			
				Liouville Fraction			242
		4.2.4	der with F	geneous Differenti Riemann-Liouville	and Liouville F	ractional Deriva-	
				a Quasi-Polynom			
		4.2.5		l Equations of			248
		4.2.6	Equations	vpe Problem for with Riemann - Lio	uville Fractiona	ıl Derivatives and	
		4.2.7	Solutions with Liouv	asi-Polynomial F; to Homogeneous I ville Fractional I ctions	Fractional Diffe Perivatives in T	rential Equatior erms of Bessel-	ıs
	4.3	Operat		od			
	4.5	4.3.1	Liouville F	Fractional Integra	tion and Differe	entiation Opera-	
		4.3.2		ecial Function Sp al Calculus for th			.261
		4.3.2	_				.263
		4.3.3		to Cauchy Type Pi			.203
		4.3.3	tial Fauat	ons with Liouville	e Fractional D	erivatives	266
		4.3.4		ults			
	4.4			ent			
5		EGRAL LUTIO		SFORM ME FRACTIONAL		OR EXPLICIT ITIAL	
	EQU	JATIO	NS				279
	5.1 5.2			a Brief Survey of Method for Solv			279
	_	tions w	vith Liouvil	le Fractional Deri	vatives		283

			Homogeneous Equations with Constant Coefficients	283
		5.2.2		
		5.2.3	1	
			Cauchy Type for Fractional Differential Equations	
	5.3		ce Transform Method for Solving Ordinary Differential	
			with Caputo Fractional Derivatives	
		5.3.1 5.3.2		222
			Cauchy Problems for Fractional Differential Equations	
	5.4	J.J.J Mollin	Transform Method for Solving Nonhomogeneous Fract	520 tional
	5.4		ential Equations with Liouville Derivatives	
		541	General Approach to the Problems	320
		5.4.2		331
		5.4.3	· · · · · · · · · · · · · · · · · · ·	
	5.5		er Transform Method for Solving Nonhomogeneous Diffe	
	5.5		quations with Riesz Fractional Derivatives	
		5.5.1		341
			One-Dimensional Equations	344
6	PAF	RTIAL	FRACTIONAL DIFFERENTIAL EQUATIONS	347
			iew of Results	
	0.1		Partial Differential Equations of Fractional Order	347
			Fractional Partial Differential Diffusion Equations.	
		6.1.3		350
	6.2		on of Cauchy Type Problems for Fractional Diffusion-Wa	
		Equati	ions	. 362
		6.2.1	Cauchy Type Problems for Two-Dimensional Equations	362
		6.2.2	- $ -$	
	6.3		on of Cauchy Problems for Fractional Diffusion-Wave 1	
			Cauchy Problems for Two-Dimensional Equations	
		6.3.2		
	6.4		on of Cauchy Problems for Fractional Evolution Equation.	
		6.4.1		380
		6.4.2		
		6.4.3	Solutions of Cauchy Problems via the H-Functions	388
7	SEQ	QUENT	TAL LINEAR DIFFERENTIAL EQUATIONS	O F
	FRA	CTIO	NAL ORDER	393
	7.1 7.2	Seque	ntial Linear Differential Equations of Fractional Order . on of Linear Differential Equations with Constant Coef-	394
	7.2		$S = \dots = $	
		7.2.1	General Solution in the Homogeneous Case	400
		7.2.2	General Solution in the Non-Homogeneous Case. Fraction	
			Green Function	

7.3	Non-Sequential Linear Differential Equations with Constant Co-
7.4	puto Derivatives
	7.4.1 General Theory
7.5	
	ficients. Generalized Method of Frobenius
	7.5.1 Introduction
	7.5.2 Solutions Around an Ordinary Point of a Fractional Differential Equation of Order a
	7.5.3 Solutions Around an Ordinary Point of a Fractional Differ-
	ential Equation of Order 2a
	7.5.5 Solution Around an a-Singular Point of a Fractional Differential Equation of Order 2a
7.6	Some Applications of Linear Ordinary Fractional Differential
	Equations
	7.6.1 Dynamics of a Sphere Immersed in an Incompressible Viscous Fluid. Basset's Problem
	7.6.2 Oscillatory Processes with Fractional Damping
	7.6.3 Study of the Tension-Deformation Relationship of Viscoelastic Materials
8 FUF	RTHER APPLICATIONS OF FRACTIONAL MODELS 449
8.1	Preliminary Review
	8.1.1 Historical Overview
	8.1.2 Complex Systems
	8.1.3 Fractional Integral and Fractional Derivative Operators 456
8.2	Fractional Model for the Super-Diffusion Processes
8.3 8.4	Dirac Equations for the Ordinary Diffusion Equation
	ductors with Multiple Trapping
Bibliogi	raphy 469
Subject	Index 521