

# Contents

|                                                        |         |
|--------------------------------------------------------|---------|
| Preface                                                | page xi |
| <b>I Introductory Material</b>                         |         |
| <b>1 Introduction</b>                                  |         |
| 1.1 Planning to plan                                   | 1       |
| 1.2 Motivational examples and applications             | 3       |
| 1.3 Basic ingredients of planning                      | 14      |
| 1.4 Algorithms, planners, and plans                    | 16      |
| 1.5 Organization of the book                           | 20      |
| <b>2 Discrete Planning</b>                             | 23      |
| 2.1 Introduction to discrete feasible planning         | 24      |
| 2.2 Searching for feasible plans                       | 27      |
| 2.3 Discrete optimal planning                          | 36      |
| 2.4 Using logic to formulate discrete planning         | 48      |
| 2.5 Logic-based planning methods                       | 53      |
| <b>II Motion Planning</b>                              | 63      |
| <b>3 Geometric Representations and Transformations</b> | 66      |
| 3.1 Geometric modeling                                 | 66      |
| 3.2 Rigid-body transformations                         | 76      |
| 3.3 Transforming kinematic chains of bodies            | 83      |
| 3.4 Transforming kinematic trees                       | 93      |
| 3.5 Nonrigid transformations                           | 99      |
| <b>4 The Configuration Space</b>                       | 105     |
| 4.1 Basic topological concepts                         | 105     |
| 4.2 Defining the configuration space                   | 120     |
| 4.3 Configuration space obstacles                      | 129     |
| 4.4 Closed kinematic chains                            | 139     |
| <b>5 Sampling-Based Motion Planning</b>                | 153     |
| 5.1 Distance and volume in C-space                     | 154     |
| 5.2 Sampling theory                                    | 161     |
| 5.3 Collision detection                                | 173     |
| 5.4 Incremental sampling and searching                 | 180     |

|             |                                              |     |
|-------------|----------------------------------------------|-----|
| <b>5.5</b>  | Rapidly exploring dense trees                | 189 |
| <b>5.6</b>  | Roadmap methods for multiple queries         | 196 |
| <b>6</b>    | <b>Combinatorial Motion Planning</b>         | 206 |
| <b>6.1</b>  | Introduction                                 | 206 |
| <b>6.2</b>  | Polygonal obstacle regions                   | 208 |
| <b>6.3</b>  | Cell decompositions                          | 218 |
| <b>6.4</b>  | Computational algebraic geometry             | 232 |
| <b>6.5</b>  | Complexity of motion planning                | 247 |
| <b>7</b>    | <b>Extensions of Basic Motion Planning</b>   | 257 |
| <b>7.1</b>  | Time-varying problems                        | 257 |
| <b>7.2</b>  | Multiple robots                              | 263 |
| <b>7.3</b>  | Mixing discrete and continuous spaces        | 270 |
| <b>7.4</b>  | Planning for closed kinematic chains         | 279 |
| <b>7.5</b>  | Folding problems in robotics and biology     | 287 |
| <b>7.6</b>  | Coverage planning                            | 292 |
| <b>7.7</b>  | Optimal motion planning                      | 295 |
| <b>8</b>    | <b>Feedback Motion Planning</b>              | 304 |
| <b>8.1</b>  | Motivation                                   | 304 |
| <b>8.2</b>  | Discrete state spaces                        | 306 |
| <b>8.3</b>  | Vector fields and integral curves            | 314 |
| <b>8.4</b>  | Complete methods for continuous spaces       | 328 |
| <b>8.5</b>  | Sampling-based methods for continuous spaces | 340 |
| <b>III</b>  | <b>Decision-Theoretic Planning</b>           | 357 |
| <b>9</b>    | <b>Basic Decision Theory</b>                 | 360 |
| <b>9.1</b>  | Preliminary concepts                         | 361 |
| <b>9.2</b>  | A game against nature                        | 368 |
| <b>9.3</b>  | Two-player zero-sum games                    | 378 |
| <b>9.4</b>  | Nonzero-sum games                            | 386 |
| <b>9.5</b>  | Decision theory under scrutiny               | 393 |
| <b>10</b>   | <b>Sequential Decision Theory</b>            | 408 |
| <b>10.1</b> | Introducing sequential games against nature  | 408 |
| <b>10.2</b> | Algorithms for computing feedback plans      | 419 |
| <b>10.3</b> | Infinite-horizon problems                    | 430 |
| <b>10.4</b> | Reinforcement learning                       | 435 |
| <b>10.5</b> | Sequential game theory                       | 442 |
| <b>10.6</b> | Continuous state spaces                      | 455 |
| <b>11</b>   | <b>Sensors and Information Spaces</b>        | 462 |
| <b>11.1</b> | Discrete state spaces                        | 463 |
| <b>11.2</b> | Derived information spaces                   | 472 |
| <b>11.3</b> | Examples for discrete state spaces           | 480 |

|                     |                                                               |     |
|---------------------|---------------------------------------------------------------|-----|
| <b>11.4</b>         | Continuous state spaces                                       | 487 |
| <b>11.5</b>         | Examples for continuous state spaces                          | 494 |
| <b>11.6</b>         | Computing probabilistic information states                    | 507 |
| <b>11.7</b>         | Information spaces in game theory                             | 512 |
| <b>12</b>           | <b>Planning Under Sensing Uncertainty</b>                     | 522 |
| <b>12.1</b>         | General methods                                               | 523 |
| <b>12.2</b>         | Localization                                                  | 528 |
| <b>12.3</b>         | Environment uncertainty and mapping                           | 540 |
| <b>12.4</b>         | Visibility-based pursuit-evasion                              | 564 |
| <b>12.5</b>         | Manipulation planning with sensing uncertainty                | 570 |
| <b>IV</b>           | <b>Planning Under Differential Constraints</b>                | 587 |
| <b>13</b>           | <b>Differential Models</b>                                    | 590 |
| <b>13.1</b>         | Velocity constraints on the configuration space               | 590 |
| <b>13.2</b>         | Phase space representation of dynamical systems               | 606 |
| <b>13.3</b>         | Basic Newton-Euler mechanics                                  | 615 |
| <b>13.4</b>         | Advanced mechanics concepts                                   | 630 |
| <b>13.5</b>         | Multiple decision makers                                      | 645 |
| <b>14</b>           | <b>Sampling-Based Planning Under Differential Constraints</b> | 651 |
| <b>14.1</b>         | Introduction                                                  | 652 |
| <b>14.2</b>         | Reachability and completeness                                 | 660 |
| <b>14.3</b>         | Sampling-based motion planning revisited                      | 670 |
| <b>14.4</b>         | Incremental sampling and searching methods                    | 678 |
| <b>14.5</b>         | Feedback planning under differential constraints              | 693 |
| <b>14.6</b>         | Decoupled planning approaches                                 | 696 |
| <b>14.7</b>         | Gradient-based trajectory optimization                        | 707 |
| <b>15</b>           | <b>System Theory and Analytical Techniques</b>                | 712 |
| <b>15.1</b>         | Basic system properties                                       | 712 |
| <b>15.2</b>         | Continuous-time dynamic programming                           | 720 |
| <b>15.3</b>         | Optimal paths for some wheeled vehicles                       | 728 |
| <b>15.4</b>         | Nonholonomic system theory                                    | 736 |
| <b>15.5</b>         | Steering methods for nonholonomic systems                     | 753 |
| <b>Bibliography</b> |                                                               | 767 |
| <b>Index</b>        |                                                               | 811 |