Metal Oxides Series

Solution Processed Metal Oxide Thin Films for Electronic Applications

Edited by Zheng Cui

Solution Processed Metal Oxide Thin Films for Electronic Applications discusses the fundamentals of solution forms of metal oxide material systems and processing techniques for key electronic device applications. The book introduces basic information (materials properties and synthesis), discusses ink formulation and thin film processing methods, including sol-gel and nanoparticle inks, printing and coating methods, surface functionalization, and presents a comprehensive accounting on the electronic applications of solution processed metal oxide films, including thin film transistors, photovoltaic cells, light-emitting diodes, and other electronics devices.

This is an important reference for those interested in metal oxide electronics, printed electronics, flexible electronics, and large-area electronics.

Key Features:

- Provides in-depth information on solution processing fundamentals, techniques, considerations, and barriers combined with key device applications
- Reviews important device applications, including transistors, light-emitting diodes, and photovoltaic cells
- Includes an overview of metal oxide materials systems (semiconductors, nanomaterials, and thin films), addressing materials synthesis, properties, limitations, and surface aspects

About the Editor:

Zheng Cui

Professor Zheng Cui graduated from the Southeast University, China, in 1981 and had his Master degree and Doctoral degree in electronic engineering in 1984 and 1988. In the field of micro and nanofabrication technologies, he published over 190 technical papers and 6 books. In 2009 after working in the United Kingdom for 20 years, he returned to China and founded the Printable Electronics Research Center (PERC) at the Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, which was then the first research center in China dedicated to printed electronics R&D. His research team at the PERC has conducted more than 50 research projects with research funding over 100 million RMB. In the past 10 years working in China, he has authored or coauthored over 90 journal papers and two books on the subject of printed electronics. In addition to academic research in printed electronics, Professor Zheng Cui also devoted to transferring technologies to industry. He has filed more than 70 patents in printed electronics. He and his team at PERC developed a novel hybrid printing technique to manufacture metalmesh transparent conductive films. The invention won the Chinese outstanding patent award in 2014. The technology was subsequently transferred to a leading manufacturer of touch panels in China and implemented in mass production. Display panels integrating the metal-mesh transparent conductors as touch sensor have been commercialized and created over billions of market value. He is also the founder of two high-tech companies utilizing printed electronics technology in gas sensors and flexible electronic circuits and both have commercial products in the market.

Contributors Volume Editor Biography Series Editor Biography Preface to the series	ix xi xiii xv
1 Introduction	1
Zheng Cui	
1.1 Solution-processed electronics 1.2 Metal oxides in solution	1
1.3 Structure of the book	3
References	5
References	6
2 Metal oxide semiconductors and conductors	7
Haiping He	'
2.1 Introduction	7
2.2 n-Type metal oxides	. 8
$2.2.1 \text{ In}_2\text{O}_3$	8
2.2.2 ZnO	12
$2.2.3 \text{ SnO}_2$	17
$2.2.4 \text{ ZnO-In}_2\text{O}_3\text{-SnO}_2 (\text{ZITO})$	21
2.3 P-type metal oxides	22
2.3.1 Cu ₂ O	22
2.3.2 NiO	25
2.3.3 SnO	25
References	27
3 Metal oxide dielectrics	21
Xitong Hong, Lei Liao	31
3.1 Introduction	31
3.2 Basics and theory of dielectrics	32
3.3 Roles of dielectric layers in thin-film transistors	34
3.4 High-k metal oxide dielectrics	36
References	37
4 Sol-gel precursor inks and films	
Chang Liu, Qianlei Tian, Lei Liao	41
4.1 Introduction	
4.2 Fundamental of sol–gel process	41
4.3 Sol-gel precursor inks	41
4.4 Sol-gel process of metal oxide film	43
4.4.1 Al ₂ O ₃ film	45
$4.4.2 \text{ HfO}_2 \text{ film}$	45

	4.4.3 ZnO film	50
	4.4.4 TiO ₂ film	54
	4.5 Other precursors-based metal oxides inks and films	56
	References	57
5	Nanoparticles inks	63
	Qun Luo	
	5.1 Introduction	63
	5.2 Synthesis of metal oxide nanoparticles	63
	5.2.1 Hot-injection method	63
	5.2.2 Hydrothermal or solvothermal method	66
	5.2.3 One-pot heating method	67
	5.2.4 Microwave-assisted method	68
	5.2.5 Precipitation method	72
	5.2.6 Sol-gel method	73
	5.2.7 Continuous flow method	73
	5.2.8 Ball-milling method	75
	5.3 Characterization and properties of metal oxide nanoparticles	76
	5.3.1 Measurement methods	76
	5.3.2 Physical and chemical properties	77
	5.4 Formulation of metal oxide nanoparticles inks	77
	5.4.1 Surfactants	79
	5.4.2 Long-term stability	79
	References	80
6	Coating and printing processes	83
	Zheng Cui, Lei Liao	
	6.1 Introduction	83
	6.2 Nonpatternable solution processes	83
	6.2.1 Spin coating	83
	6.2.2 Spray coating	84
	6.2.3 Bar coating	87
	6.3 Patternable solution processes	/ 88
	6.3.1 Inkjet printing	88
	6.3.2 Templated printing	91
	6.4 Roll-to-roll solution processes	92
	6.5 Self-aligned solution processes	94
	References	95
7	Thermal processes	99
	Lei Liao, Zheng Cui	
	7.1 Introduction	99
	7.2 Internal annealing	99
	7.3 External annealing	102
	7.3.1 UV annealing	102
	7.3.2 Microwave annealing	103

	7.3.3 High-pressure annealing	104
	7.4 Low-temperature enabled flexible electronics	105
	References	107
8	Applications in photovoltaics	109
	Qun Luo	
	8.1 Introduction	109
	8.2 Metal oxides as buffer layers for OPVs	109
	8.3 Electron transport layer	112
	8.3.1 ZnO	112
	8.3.2 TiO ₂	113
	8.3.3 Other metal oxides	113
	8.4 Hole transport layer	114
	8.4.1 MoO ₃	115
	$8.4.2 \text{ V}_2\text{O}_5$	116
	$8.4.3 \text{ WO}_x$	116
	8.4.4 NiO	117
	$8.4.5 \text{ CuO}_x$	118
	8.4.6 Metal oxide composites	119
	8.5 Metal oxides as buffer layer for perovskite PV	120
	8.6 Electron extraction layer	121
	8.6.1 TiO ₂	122
	8.6.2 ZnO	122
	8.6.3 SnO ₂	124
	8.6.4 Other metal oxides	126
	8.7 Hole extraction layer	127
	8.7.1 NiO	127
	$8.7.2 \text{ Cu}_x\text{O}$	128
	$8.7.3 \text{ MoO}_x$	129
	8.7.4 Metal oxide composites	130
	8.8 Metal oxides as electrode	130
	8.9 Metal oxides as other functional layers	132
	References	133
)	Applications in OLED and QLED	141
	Haiping He	
	9.1 Introduction of OLED and QLED	141
	9.1.1 OLED	141
	9.1.2 QLED	142
	9.2 Metal oxides in OLEDs and QLEDs	146
	9.2.1 Metal oxides as electron transport layer	146
	9.2.2 Metal oxides as hole transport layer	150
	References	152
nd	lex	155

I