I. A First Look at the Universe. 1

1. The Earth's Orientation to the Sun and the Stars. 3

- §1.1. The Year and the Seasons. 3
- §1.2. The Celestial Sphere. 8
- §1.3. Fixed Directions. 14
- §1.4. Star Maps. 16
- §1.5. The Milky Way and the Plane of the Galaxy. 33 General Problems and Questions. 37

2. The Sun and the Stars. 41

- §2.1. The Solar Constant. 41
- §2.2. Apparent Magnitudes. 43
- §2.3. The Distances of Stars. 44
- §2.4. An Excursion into Astronomical History. 45
- §2.5. The Achievement of Cheseaux. 49
- §2.6. The Solar Cycle. 51
 - General Problems and Questions. 65
- 3. Galaxies. 68
 - §3.1. Gravitation. 68
 - §3.2. Spiral Structure and Nearby Galaxies. 73
 - §3.3. Galaxies and the Structure of the Universe. 79 General Problems and Questions. 94

Appendixes to Section I. 95

- I.1. The Calendar. 95
- I.2. Logarithms and Magnitudes. 97
- I.3. Temperatures and the Absolute Scale. 102

I.4. The Masses of Galaxies. 113

General Problems and Questions. 113

References for Section I. 114

II. Basic Ideas and Instruments. 115

4. Particles and Radiation in General. 117

- §4.1. Particle Paths. 117
- §4.2. Radiation. 122
- §4.3. Time-Sense and Causality. 129
- §4.4. Quantum Mechanics and Atomic Structure. 131
- \$4.5. Reflections on the Sophistication of Physical Theories. 145

General Problems and Questions. 146

5. Particles and Radiation in Practice. 148

- §5.1. Lenses and Refracting Telescopes. 148
- §5.2. Mirrors and Reflecting Telescopes. 158
- §5.3. Refractors versus Reflectors. 162
- §5.4. The Wave Theory of Light. 170
- §5.5. Waves and Bullets. 178
- §5.6. The Nature of a Light Wave. 184
- §5.7. Wavelengths and the Speed of Light. 188 General Problems and Questions. 194

Appendixes to Section II. 195

- II.1. The Emission and Absorption of Radiation. 195
 - II.2. Radio Telescopes. 204
 - II.3. Modern Electronic Devices Used at Optical Wavelengths. 209
 - II.4. "Local" Geometry and Its Relation to the Physical World. 213
 - II.5. The Speed of Light Again. 220
 - II.6. The Light Cone and Its Relation to Particle Motions. 222
 - II.7. Proper Time and the Clock Paradox. 227
 - II.8. The Doppler Shift. 233
 - II.9. Diffraction Gratings and Spectrographs. 254 General Problems and Questions. 260

References for Section II. 262

III. Astrophysics. 263

6. The Formation of Stars and the Origin of the Galaxy. 265

§6.1. Gas Clouds. 265

§6.2. Early Galactic History. 271

- §6.3. Subcondensation and the Formation of Star Clusters. 278
- §6.4. Fragmentation. 285
- §6.5. The Condensation of a Protostar. 285
- §6.6. The Salpeter Function. 293
- §6.7. The Colors of Galaxies. 294 General Problems and Questions. 297
- 7. Atoms, Nuclei, and the Evolution of Stars. 299
 - §7.1. The Need for a Stellar Energy Source. 299
 - §7.2. Radioactivity. 305
 - §7.3. Natural Radioactivity or Fusion? 307
 - §7.4. Atomic Structure. 308
 - §7.5. Nuclei and Particles. 311
 - §7.6. Isotopes and Their Stability. 316
 - §7.7. Nuclear Energy and the Energy of the Stars. 321
 - §7.8. The Evolution of Stars. 326
 - §7.9. The Ultimate Stellar Problem. 331
 - §7.10. The History of Matter. 341 General Problems and Questions. 343

8. The Measurement of Astronomical Distances. 345

- §8.1. The Use of the Main Sequence. 345
- §8.2. The Cepheid Variables. 349
- §8.3. Extending the Distance Range. 356 General Problems and Questions. 359

Appendixes to Section III. 361

- III.1. The Hyades Main Sequence. 361
- III.2. The Fission of Heavy Nuclei. 364
- III.3. The Origin of the Very Heavy Elements. 376
- III.4. Hydrogen-Burning and the Puzzle of the Helium Abundance. 383
- III.5. The Mystery of the Missing Solar Neutrinos. 387
- III.6. Nuclear Explosions, Man-Made and Stellar. 390
- III.7. White-Dwarf Binaries and the Occurrence of Novae. 394
- III.8. Nuclear States. 397
- III.9. Nuclear Reaction Rates. 400
- III.10. Families of Particles. 403 General Problems and Questions. 404

References for Section III. 405

IV. The Solar System. 407

9. The Pioneers of Astronomy. 409

- §9.1. The Greek Astronomers. 409
- §9.2. Copernicus. 415
- §9.3. Kepler. 417
- §9.4. Galileo Galilei. 423
- §9.5. Hooke. 426
- §9.6. Newton. 430

General Problems and Questions. 434

10. The Physical Characteristics of the Solar System. 436

- §10.1. The Discovery of New Planets. 436
- §10.2. The Titius-Bode "Law." 441
- §10.3. Some General Characteristics of the Solar System. 444
- §10.4. Earth. 452
- §10.5. Venus. 463
- §10.6. The Moon. 463
- §10.7. Mars. 469
- §10.8. Mercury. 474
- §10.9. The Four Major Planets. 477
- §10.10. Comets. 483
 - General Problems and Questions. 492
- 11. The Origin of the Planets. 494
 - §11.1. The Mass, Density, and Composition of the Planets. 494
 - §11.2. The Primordial Sun. 499
 - §11.3. An Historical Interlude. 501
 - §11.4. Magnetic Spin-Down. 503
 - §11.5. Segregation by Condensation. 508
 - §11.6. General Conclusions. 511
 - §11.7. The Number of Other Planetary Systems. 512 General Problems and Questions. 514
- 12. Life in the Universe. 515
 - §12.1. The Chemical Basis of Terrestrial Life. 516
 - §12.2. DNA, RNA, and Proteins. 522
 - §12.3. What is Life? 532
 - §12.4. The Basic Materials of Life. 533
 - §12.5. The Origin of Life. 540
 - §12.6. Intelligence. 545
 - §12.7. Interstellar Communication. 546 General Problems and Questions. 551

Appendixes to Section IV. 553

- IV.1. The Formation of Jupiter and Saturn. 553
- IV.2. The Aggregation of Planets. 560
- IV.3. Other Planetary Systems. 569
- IV.4. The Age of the Solar System. 571
- IV.5. The Age of the Galaxy. 574

References for Section IV. 578

V. Radioastronomy. 581

- 13. Radioastronomy. 583
 - §13.1. Recapitulation of the Basic Properties of Radiation. 583

§13.2. The 21-cm Radiation of Atomic Hydrogen. 586

- §13.3. Molecules. 588
- §13.4. Radio Waves from Hot Gas Clouds. 590
- §13.5. The Radiative Effects of Fast-Moving Particles. 592
- §13.6. The Crab Nebula: An Historical Diversion. 596
- §13.7. A Personal Recollection. 598
- §13.8. Pulsars. 601 General Problems and Questions. 604

14. The Most Powerful Radiosources. 605

§14.1. Radiogalaxies. 605

§14.2. Quasars. 612

- §14.3. Some Heterodox Considerations. 618
- §14.4. QSO Pairs. 624

General Problems and Questions. 626

Appendix to Section V. 627

V.1. The Counting of Radiosources. 627 General Problems and Questions. 633

References for Section V. 634

VI. Cosmology. 635

15. Universal Geometry and Cosmology. 637

- §15.1. The "Principles" of Cosmology. 639
- §15.2. Universal Time. 640
- §15.3. Deductions from the Principles of Cosmology. 644
- §15.4. Einstein's Theory of Gravitation. 645

§15.5. Observational Cosmology. 650 General Problems and Questions. 656

16. The Origin of the Universe. 657

- §16.1. Recapitulation. 657
- §16.2. The Meaning of the Expansion of the System of Galaxies. 658
- §16.3. An Alternative Description of the Expansion of the Universe. 659
- §16.4. The Redshift-Magnitude Relation of Hubble and Humason. 666
- §16.5. The Microwave Background. 669
- §16.6. Superparticles and the Hadronic Era. 672 §16.7. Summary. 673

General Problems and Questions. 673

17. The Steady-State Model. 675

- §17.1. Broken Particle Paths. 675
- §17.2. The Steady-State Expansion of the Universe. 677 §17.3. The Exposure of the Steady-State Model to Disproof. 678 General Problems and Questions. 681

18. Final Considerations. 682

§18.1. The Present Dilemma. 682

§18.2. Positive and Negative Mass Interactions. 686

§18.3. A General Formulation of the Mass Interaction. 687 General Problems and Questions. 694

Appendixes to Section VI. 695

- VI.1. The Form of the Mass Function near a Zero Surface. 695
- VI.2. What Is Time? 697
- VI.3. Black Holes and White Holes. 698
- VI.4. The Problem of Primordial Helium and Deuterium. 702

References for Section VI. 705

Glossary. 707

Index. 721