

Contents

Introduction	PART III THE REAL NUMBERS (AND THE COMPLEX NUMBERS)	
	1	
PART I THE RATIONALS		
1 Counting Sheep	5	
1.1 A Foundation Myth	7	
1.2 What Were Numbers Used For?	12	
1.3 A Greek Myth	15	
2 The Strictly Positive Rationals	23	
2.1 An Indian Legend	23	
2.2 Equivalence Classes	27	
2.3 Properties of the Strictly Positive Rationals	33	
2.4 What Have We Actually Done?	37	
3 The Rational Numbers	39	
3.1 Negative Numbers	39	
3.2 Defining the Rational Numbers	44	
3.3 What Does Nature Say?	51	
3.4 When Are Two Things the Same?	52	
PART II THE NATURAL NUMBERS		
4 The Golden Key	61	
4.1 The Least Member	61	
4.2 Inductive Definition	65	
4.3 Applications	69	
4.4 Prime Numbers	77	
5 Modular Arithmetic	83	
5.1 Finite Fields	83	

5.2	Some Pretty Theorems	87
5.3	A New Use for Old Numbers	91
5.4	More Modular Arithmetic	98
5.5	Problems of Equal Difficulty	101
6	Axioms for the Natural Numbers	109
6.1	The Peano Axioms	109
6.2	Order	113
6.3	Conclusion of the Argument	117
6.4	Order Numbers Can Be Used as Counting Numbers	121
6.5	Objections	127
PART III THE REAL NUMBERS (AND THE COMPLEX NUMBERS)		135
7	What Is the Problem?	137
7.1	Mathematics Becomes a Profession	137
7.2	Rogue Numbers	138
7.3	How Can We Justify Calculus?	147
7.4	The Fundamental Axiom of Analysis	151
7.5	Dependent Choice	156
7.6	Equivalent Forms of the Fundamental Axiom	159
8	And What Is Its Solution?	167
8.1	A Construction of the Real Numbers	167
8.2	Some Consequences	177
8.3	Are the Real Numbers Real?	182
9	The Complex Numbers	187
9.1	Constructing the Complex Numbers	187
9.2	Analysis for \mathbb{C}	191
9.3	Continuous Functions from \mathbb{C}	195
10	A Plethora of Polynomials	199
10.1	Preliminaries	199
10.2	The Fundamental Theorem of Algebra	205
10.3	Liouville Numbers	209
10.4	A Non-Archimedean Ordered Field	213
11	Can We Go Further?	221
11.1	The Quaternions	221
11.2	What Happened Next	226
11.3	Valedictory	230

APPENDICES	231	
<i>Appendix A</i>	Products of Many Elements	233
<i>Appendix B</i>	<i>n</i>th Complex Roots	239
<i>Appendix C</i>	How Do Quaternions Represent Rotations?	243
<i>Appendix D</i>	Why Are the Quaternions So Special?	247
<i>References</i>		255
<i>Index</i>		257

Faced with questions like "What is justice?", practical people discuss practical matters, and intellectuals enjoy the vague contemplation of more abstract topics. The basic philosophers provide answers which may not be found, but which illuminate the path that we follow.

The question "What are numbers?" is clearly less important, but has interested several philosophers and mathematicians. The answer given in this book is essentially due to Cantor, Dedekind in two essays ("Stetigkeit und irrationale Zahlen" (continuity and irrational numbers)) and "Was sind und was sollen die Zahlen?" (What are numbers and what should they be? [1]). Starting with the natural numbers, \mathbb{N} (that is to say, the strictly positive integers), we consider the strictly positive rational numbers \mathbb{Q}^+ and then use these to construct the rational numbers \mathbb{Q} . We then use the rational numbers to construct the real numbers. But once \mathbb{Q} has been constructed, we construct the complex numbers \mathbb{C} and we consider the numbers required by modern analysts (that is to say, Dedekind cuts) to complete the construction of \mathbb{C} . (This is the reason why we have to start with the natural numbers.) However, we will have to say "when?" comes from. Dedekind showed that all the properties of the strictly positive integers can be derived from a very small number of very plausible rules. The question of whether to accept these rules cannot be left to the individual mathematician.

In the real world, we dig the foundations before we start the building. In university mathematics we have tended to install foundations when the building is almost complete. Pedagogically, there are good reasons for studying the construction of the various number systems only after the student has acquired facility in using them.