List of symbols				xiii
1	Bac	is concents in microfluidics		1
+	1 1	Lab on a chin technology		1
	1.1	Saaling laws in microfluidies		1
	1.2	Fluids and fields		2
	1.0	SI units and mathematical notation		57
	1.4	Porturbation theory		11
	1.0	Figenfunction expansion		11
	1.0	Further reading		15
	1.1	Further reading		10
	1.0	Solutions		10
	1.9	Solutions and balloud pullations where yet beaubat work		11
2	Gov	erning equations		19
	2.1	Mass flux, conservation of mass, and the continuity equation		19
	2.2	Momentum flux, force densities, and the equation of motion		21
	2.3	Energy flux and the heat-transfer equation		28
	2.4	Further reading		31
	2.5	Exercises		32
	2.6	Solutions		33
-	Deel			07
3	Bas	IC NOW SOlutions		31
	3.1	Fluids in mechanical equilibrium		37
	3.2	Liquid film flow on an inclined plane		39
	3.3	Couette flow		40
	3.4	Poiseuille flow		41
	3.5	Poiseuille flow in shape-perturbed channels		51
	3.6	Poiseuille flow for weakly compressible fluids		55
	3.7	Stokes drag on a sphere moving in steady state		60
	3.8	Exercises		63
	3.9	Solutions		65

4	Hyd	Iraulic resistance and compliance		7	1
	4.1	Viscous dissipation of energy for incompressible fluids		7	71
	4.2 Hydraulic resistance of some straight channels			7	4
	4.3	Shape dependence of hydraulic resistance		7	75
	4.4	Reynolds number for systems with two length scales		7	79
	4.5	Hydraulic resistance, two connected straight channels		8	31
	4.6	Compliance		8	33
	4.7	Equivalent circuit theory and Kirchhoff's laws		8	34
	4.8	Exercises		8	36
	4.9	Solutions		8	88
5	Diff	usion		9	91
	5.1	A random-walk model of diffusion		9	91
	5.2	The convection-diffusion equation for solutions		9	33
	5.3	The diffusion equation		9	95
	5.4	The H-filter: separating solutes by diffusion		9	98
	5.5	Taylor dispersion; a convection-diffusion example		10	00
	5.6	Exercises		10)5
	5.7	Solutions		10)6
0		Eigenbaction expansion		10	10
0	C 1	Starting a Country flow		10	19
	0.1	Starting a Couette now		11	11
	6.2	Flow induced by clowly escillating boundaries		11	12
	6.4	Accelerated motion of a spherical body in a liquid		11	16
	6.5	Other time dependent flows		11	17
	6.6	Exercises		11	18
	6.7	Solutions		11	18
	0.1	Solutions			
7	Cap	oillary effects		12	23
	7.1	Surface tension		12	23
	7.2	Contact angle		12	27
	7.3	Capillary length and capillary rise		12	28
	7.4	Capillary pumps		10	51
	7.5	Marangoni effect; surface-tension gradients		10	54
	7.6	Exercises		10	54
	7.7	Solutions		1.	50
8	Elec	ctrohydrodynamics		14	41
	8.1	Polarization and dipole moments		14	11
	8.2	Electrokinetic effects		14	13
	8.3	The Debye layer near charged surfaces		14	15
	8.4	Further reading		1	52
	8.5	Exercises		1	52
	8.6	Solutions		1	54

9	Electroosmosis		157
	9.1 Electrohydrodynamic transport theory		157
	9.2 Ideal electro-osmotic flow		157
	9.3 Debye-layer overlap		161
	9.4 Ideal EO flow with backpressure	14.4 The staggers	162
	9.5 The many-channel EO pump		165
	9.6 The cascade EO pump		166
	9.7 Further reading		169
	9.8 Exercises		169
	9.9 Solutions		170
10	Dielectrophonosis		172
10	10.1 Induced polarization and dielectric forces: houristically	rah month 2 31	173
	10.2 A point dipole in a dielectric fluid		174
	10.3 A dielectric sphere in a dielectric fluid: induced dipole		175
	10.5 A dielectric sphere in a dielectric find, induced dipole		177
	10.5 Dielectrophoretic particle trapping in microfluidics		178
	10.6 The AC dielectrophoretic force on a dielectric sphere		180
	10.7 Exercises		182
	10.8 Solutions		184
			104
11	Magnetophoresis		187
	11.1 Magnetophoresis and bioanalysis		187
	11.2 Magnetostatics		188
	11.3 Basic equations for magnetophoresis		190
	11.4 Calculation of magnetic-bead motion		191
	11.5 Magnetophoretic lab-on-a-chip systems		193
	11.6 Further reading		194
	11.7 Exercises		194
	11.8 Solutions		195
12	Thermal transfer		197
-	12.1 Thermal effects in hydrostatics		198
	12.2 Poiseuille flow in a transverse temperature gradient		201
	12.3 Equivalent circuit model for heat transfer		205
	12.4 The PCR biochip		208
	12.5 Exercises		210
	12.6 Solutions		211
	The share for		010
23	Two-phase flow		213
	Copillant and marity results		213
	Capillary and gravity waves		215
	Deeplete in microfluidie in etiene and disitel fuidie		220
	Enother reading		224
	Further reading		220
	Land Exercises		220
	La. Joiutions		228

14	Complex flow patterns		221
14	14.1 Pressure driven flow in shape perturbed microchappels		231
	14.2 Streamlines in a shape-perturbed channel		235
	14.3 Lubrication theory		237
	14.4 The staggered herring-bone mixer		238
	14.5 Induced-charge electrolytic flow		240
	14.6 Exercises		248
	14.7 Solutions		249
	Exercises		
15	Acoustofluidics		255
	15.1 The acoustic-wave equation for zero viscosity		256
	15.2 Acoustic waves in first-order perturbation theory		255
	15.3 Viscous damping of first-order acoustic waves		260
	15.4 Acoustic resonances		262
	15.5 Acoustic waves in multilayer systems		204
	15.6 Second-order acoustic fields		201
	15.7 Further reading		270
	15.8 Exercises		271
	15.9 Solutions		272
16	Optofluidics		275
	16.1 The optical wave equation in electrolytes		276
	16.2 Molecular absorption and Beer–Lambert's law		278
	16.3 Molecular fluorescence and phosphorescence		281
	16.4 Onchip waveguides		282
	16.5 Onchip laser sources		283
	16.6 Photonic bandgap structures in optofluidics		286
	16.7 Further reading		288
	16.8 Exercises		288
	16.9 Solutions		289
17	Nanofluidics		291
	17.1 Investigation of the no-slip boundary condition		291
	17.2 Capillary filling of nanochannels		294
	17.3 Squeeze flow in nanoimprint lithography		298
	17.4 Nanofluidics and molecular dynamics		302
	17.5 Exercises		304
	17.6 Solutions		305
	Exectrohydrodynamics		200
Ap	pendix A Physical constants		309
	A.1 Water		309
	A.2 VISCOSITY		309
	A.3 Diffusivity		310
	A.4 Surface tension and contact angle		310

Appendix B Dimensionless numbers	311
Appendix C Curvilinear co-ordinates C1 Cartesian co-ordinates C2 Cylindrical polar co-ordinates C3 Spherical polar co-ordinates	313 313 314 316
D1 The partition function and the free energy D2 The chemical potential of a solution	319 319 320
Appendix E The wave equation	321
F1 The finite-element method (FEM) F2 The level set method and motion of interfaces	325 325 325 329
Bibliography	333
Index Scalar product	339