Contents

1	Fun	damentals	
	11	Introduction	
	1.2	Quantum numbers, energy levels, and things Nuclear spin Spin angular momentum and the nuclear magnetic moment Nuclear spin quantum numbers	
	1.3	Nuclear spins interacting with a magnetic field Effect of an applied field Spin ½ nuclei Energies of the nuclear quantum states	
	1.4	Nuclear magnetic resonance spectroscopy Resonance frequencies Selection rules Intensities	
	1.5	Nuclear spins and their surroundings NMR linewidths and resolution Timescales	
	1.6	Chemical shielding The chemical shift and the ppm scale NMR nomenclature	
	1.7	Scalar coupling The coupling constant Effect of changing the field on the appearance of the spectrum Coupling to a group of spin ½ nuclei Coupling to groups of inequivalent nuclei Stick diagrams Decoupling	n
	1.8	Quadrupolar nuclei, spins > ½ Coupling to nuclei with spin >½ Coupling to several identical quadrupolar nuclei Coupling to several groups of neighbours, including quadrupolar nuclei Quadrupolar broadening	
	1.9	Natural abundance Satellites Isotopologues	
	1.10	Second-order couplings Chemical vs magnetic equivalence	

CONTENTS

	1.1	I Summary	21
	1.12	2 Exercises: prediction of first-order spectra	22
		Workflow	22
7	Ctu	underson die bestern die stiere	
4	Str	ucture determination	26
	2.1	Introduction	26
	2.2	Interpretation of an NMR spectrum	26
		Workflow	26
		Hints	27
		Caveats	27
		Determination of couplings and coupling patterns	27
		Resolving ambiguities	28
		Satellites	30
		Example	31
		Analysis of overlapping first-order multiplets	33
		Example	33
	2.3	Summary	35
	2.4	Exercises	35
		General comment	35
_	_	NMR ineviding and resolution	55
3	Fac	fors influencing the chemical shift and coupling constants	39
	3.1	Introduction	39
	3.2	General trends in the chemical shift	39
		Factors influencing the chemical shift—the diamagnetic and paramagnetic terms	40
		Factors influencing the chemical shift-geometry	40
		Factors influencing the chemical shift–electronegativity, charge, and oxidation state	41
		Factors influencing the chemical shift—co-ordination number	42
		Factors influencing the chemical shift-co-ordination: effect on the	
		ligands Eactors influencing the chemical shift are and in the second	43
		effect on transition metal	11
		Factors influencing the chemical shift–paramagnetic	45
		Lanthanide-induced shifts	45
		Lanthanide shift reagents	46
		Temperature dependence of the paramagnetic shift: an NMR thermometer	47
	3.3	General trends in the coupling constant	48
		Factors influencing the coupling constant–gyromagnetic ratio	48
		Factors influencing the coupling constant–periodicity	48
		Factors influencing the coupling constant—s-character in the bond	49
		Chemical vs magnetic equivalence	

		Factors influencing the coupling constant-hybridization	49
		Factors influencing the coupling constant—co-ordination number	49
		Factors influencing the coupling constant–electronegativity	50
		Factors influencing the coupling constant-trans-influence	50
		Factors influencing the coupling constant-interbond angles	51
		Factors influencing the coupling constant–lone pairs	53
		Factors influencing the coupling constant—oxidation state	54
	3.4	Summary Sulley no second brod electron hereby considered and	54
	3.5	Exercises	54
4	Exp	erimental methods: pulses, the vector model,	
	and	I relaxation	56
	4.1	Introduction	56
	12	Experimental methods	56
	4.2		56
		The Fourier transform method	57
			57
	4.3	The vector model and the rotating frame	57
		Magnetic moment of a collection of spins	57
		The rotating frame	20
		The overlation pulse	20
		Victor model of chamical chiffs	50
		Vector model of scalar couplings	50
		vector moder of scalar couplings	55
	4.4	Relaxation	60
		Relaxation mechanisms	60
		Dipole-dipole relaxation	61
		Quadrupolar relaxation	61
		Effect of relaxation on the NMR spectrum	62
		Nuclear Overhauser effect—the nOe	62
		Vector model picture of relaxation	63
		I ₁ (<i>mo</i>)—relaxation in the rotating frame	64
		Measurement of 1, 12	04
	4.5	Application of relaxation measurements to chemical problems	65
		Molecular hydrogen complexes	65
		Spectral editing using relaxation times	6/
		Contrast agents for magnetic resonance imaging	6/
	4.6	Summary	68
	4.7	Exercises	69
5	Pola	arization transfer and 2-D NMR spectroscopy	70
	5.1	Introduction /	70
	5.2	Polarization transfer	70
		INEPT	71

	5.3	Principles of 2-D NMR spectroscopy	72
		Interpretation of 2-D spectra	74
	5.4	Applications of 2-D NMR to inorganic systems COSY	75 75
		Inverse (indirect) detection	76
		Heteronuclear Multiple Quantum Coherence (HMQC)	76
		Heteronuclear Single Quantum Coherence (HSQC)	78
		Heteronuclear Multiple Bond Correlation (HMBC)	79
		NOESY and HOESY	79
	5.5	Hyperpolarization techniques	81
		para-Hydrogen for Sensitivity Enhancement (PHIP)	83
		SABRE	85
	5.6	Summary	85
	5.7	Exercises	86
6	Dy	namic NMR spectroscopy	89
	6.1	Introduction	89
	6.2	Effect of dynamic processes on the spectra	90
		The NMR timescale	90
		Effect of temperature	91
		Fast and slow exchange limits	91
	6.3	Determining the intimate mechanism of exchange	92
		Concerted versus non-concerted exchange	92
	6.4	Determination of the thermodynamic and kinetic parameters of exchange	93
		The rate constant	93
		ΔG^{\dagger}	94
		Differential broadening	94
		Multisite dynamic processes	94
	6.5	Saturation transfer	96
		Monitoring exchange using saturation transfer	96
		Measuring exchange rates using saturation transfer	97
		Saturation transfer by spin diffusion	97
	6.6	Effect of exchange on spin-spin coupling	98
		Averaging of the coupling constant in an intramolecular process	98
	. 7	Exchange decoupling in an intermolecular process	99
	6./	2-D methods for studying exchange	99
		Exchange specifoscopy Multisite exchange	100
		Virtual exchange	100
	68	Summary	101
	6.0	Evercices	101
	0.9	LACICISES	102

7	The	e solid state	104
	7.1	Introduction	104
	7.2	Nuclear interactions in the solid state Magic angle spinning (MAS)	104 105
	7.3	Chemical shift anisotropy Spinning sidebands The principal axis system	105 105 106
	7.4	Dipolar interactions Effect of magic angle spinning	106 107
	7.5	Polarization transfer in solid-state NMR Cross-polarization Cross-polarization build-up 2-D polarization transfer experiments in the solid state	107 107 108 109
	7.6	Quadrupolar interactions in solid-state NMR	110
	7.7	Summary	111
	7.8	Exercises	112

Glossary 115

Bibliography 117

Index 119

the mide for interpreting ANNR spectra as independent of the period as ments present, the spectrum dependent prior we nuclear spins present and the LA). Therefore it is sensible first places on the nuclear spins present and the behave rather than the elements present. By developing an unsending of whit NMR spectra look me way they do besed on the spins, rather the elements present. By developing an unsending of white present, we can apply our knowledge to the interpretation of NMR spectrum, not just the of protons. The magnitude in the download and of the coupling constants will of course, vary widely depending the angle of 00 ppm and platinum-phosphores coupling constants are measured in the coupling constants (i) of hertz rather than the familiar proton ranges of 0-10 ppm and the respectively.

Figure 1.1 The takes for interprint of a bind spectra demonstration only on the binder spinol present. Connecter the H will be produced in the trajectory of the entry present to Chart the trajectory of the spinol of the spinol