COMBINATORIAL MATHEMATICS

- · Covers enumeration, graphs, sets, and methods
- · Assumes no prior exposure to combinatorics
- · Suitable for a one-year sequence, or as a one-semester introduction leading to advanced courses
- · Contains more than 2200 exercises at various levels
- · Complete solutions manual available for instructors at www.cambridge.org/west
- Includes more than 2300 references and many exercises, theorems, and proofs that have not previously appeared in textbooks
- · Includes both classical results and more recent developments

"This is a real gem, capturing the spirit, breadth, and depth of combinatorics. Doug West is a master of exposition, his thorough treatment of the subject will be useful for students and researchers in mathematics and computer science."

NOGA ALON, Princeton University

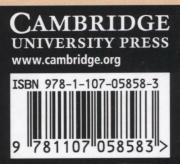
"A comprehensive and comprehensible treatment of combinatorial mathematics – what the author intended, and more – a valuable resource on the subject. It may well stimulate the addition to the university curriculum of courses in this area. Borrowing advice from the past, my recommendation for anyone wanting a definitive book on combinatorics is 'Go West, my friend, go West!'"

LOWELL BEINEKE, Purdue University

"I have taught out of this book for many years. It is the ideal textbook for graduate students or advanced undergraduates. The book is filled with lots of great problems that are well suited for homework assignments and potential research projects. Highly recommended."

ARTHUR BENJAMIN, Harvey Mudd College

"This book is impressive both for its breadth and its hundreds of exercises. Serious study of it will richly reward the reader."


DANIEL CRANSTON, Virginia Commonwealth University

"This is a great book by a great writer. It covers the main topics of combinatorics, is well written, and presents many beautiful ideas and techniques. It is very helpful to students, teachers, and researchers. I would like to have this book on my desk."

ALEXANDR KOSTOCHKA, University of Illinois

Cover illustration:

Background image: Sunnybeach/E+/Getty Images

Preface	xiii
Chapter 0 - Introduction.	1
Sets, Functions, and Relations: 2. Graphs: 3. Discrete Probability: 6. Other Discrete Structures: 8. Complexity: 9.	
Part I — Enumeration	
Chapter 1 - Combinatorial Arguments.	13
1.1. Classical Models. Elementary Principles: 14. Words, Sets, and Multisets: 16. Exercises: 20.	14
1.2. Identities. Lattice Paths and Pascal's Triangle: 24. Delannoy Numbers: 28. Exercises: 31.	24
1.3. Applications. Graphs and Trees: 35. Multinomial Coefficients: 37. The Ballot Problem: 39. Catalan Numbers: 41. Exercises: 46.	35
Chapter 2 - Recurrence Relations.	51
2.1. Obtaining Recurrences. Classical Examples: 52. Variations: 56. Exercises: 59.	52
2.2. Elementary Solution Methods. The Characteristic Equation Method: 67. The Generating Function Method: 73. Exercises: 78.	66
2.3. Further Topics. The Substitution Method: 82. Asymptotic Analysis: 84. The WZ Method (optional): 87. Exercises: 91.	82

Chapter 3 - Generating Functions.	93
3.1. Ordinary Generating Functions. Modeling Counting Problems: 94. Permutation Statistics: 98. Exercises: 103.	93
3.2. Coefficients and Applications. Operations and Summations: 107. Snake Oil: 112. Exercises: 114.	107
3.3. Exponential Generating Functions. Modeling Labeled Structures: 118. Stirling and Derangement Applications: 121. The Exponential Formula: 124. The Lagrange Inversion Formula (optional): 129. Exercises: 132.	118
3.4. Partitions of Integers. Generating Function Methods: 137. Ferrers Diagrams: 141. Bulgarian Solitaire (optional): 143. Distribution Models: 145. Exercises: 148.	137
Chapter 4 - Further Topics.	150
	153
4.1. The Inclusion-Exclusion Principle. The Basic Principle: 153. Restricted Permutations: 159. Signed Involutions: 163. Determinants and Path Systems (optional): 165. Exercises: 171.	153
4.2. Pólya–Redfield Counting. Burnside's Lemma: 179. The Pattern Inventory: 181. Classical Cycle Indices: 185. Exercises: 187.	178
4.3. Permutations and Tableaux. The Hook-Length Formula: 189. The RSK Correspondence: 193. Switching P-Symbol and Q-Symbol: 198. Jeu de Taquin (optional): 201. Exercises: 206.	189
Part II — Graphs	
Chapter 5 - First Concepts for Graphs.	209
5.1. Definitions and Examples. Graphs and Subgraphs: 209. Isomorphism: 211. The Petersen Graph and Hypercubes: 213. Exercises: 216.	209
5.2. Vertex Degrees. The Degree-Sum Formula: 220. Degree Lists: 221. Extremality: 223. Directed Graphs: 224. Exercises: 226.	220
5.3. Connection and Decomposition. Components and Walks: 229. Cycles and Cut-Edges: 231. Eulerian Circuits: 233. Exercises: 235.	229
5.4. Trees and Distance. Properties of Trees: 240. Distance and Diameter: 242. Optimization on Weighted Graphs: 245. Exercises: 247.	239

Cha	apter 6 - Matchings.	253
6.1.	Matching in Bipartite Graphs.	253
	Hall's Theorem: 254. Min-Max Relations: 258. Exercises: 260.	264
6.2.	Matching in General Graphs. Tutte's 1-Factor Theorem: 264. General Factors of Graphs: 268. Exercises: 272.	204
6.3.	Algorithmic Aspects.	276
	Augmenting Paths: 277. Weighted Bipartite Matching: 279. Fast Bipartite Matching (optional): 283.	
	Stable Matchings (optional): 284. Exercises: 286.	
Ch	apter 7 - Connectivity and Cycles.	289
7.1.	Connectivity Parameters.	289
	Separating Sets: 289. Edge Cuts: 293. Blocks: 294. Exercises: 295	
7.2.	Properties of k-Connected Graphs.	298
	Menger's Theorem: 298. Applications of Menger's Theorem: 301. 2-Connected and 3-Connected Graphs: 304.	
	Highly Connected Orientations (optional): 307. Exercises: 311.	
7.3.	Spanning Cycles.	316
	Properties of Hamiltonian Graphs: 317.	
	Sufficient Conditions: 319. Long Cycles (optional): 322.	
	Further Directions (optional): 325. Exercises: 328.	
Ch	apter 8 - Coloring.	335
81	Vertex Coloring.	335
0.1.	Upper Bounds: 336. Triangle-Free Graphs: 339. Exercises: 341.	
8.2.	Structural Aspects.	344
	Color-Critical Graphs: 344. List Coloring: 346.	
0.0	Forced Subgraphs (optional): 349. Exercises: 353.	357
8.3.	Edge-Coloring and Perfection. Special Classes: 357. Vizing's Theorem and Extensions: 359.	331
	List Edge-Coloring: 362. Perfect Graphs: 366. Exercises: 370.	
	Plane beaver has regress to remove the statement bearings and the section of	
Ch	apter 9 - Planar Graphs.	377
9.1.	Embeddings and Euler's Formula.	377
	Drawings and Duals: 378. Euler's Formula: 383. Exercises: 385.	200
9.2.	Structure of Planar Graphs.	390
	Kuratowski's Theorem: 390. The Separator Theorem (optional): 394 Exercises: 397.	
93	Coloring of Planar Graphs.	399
0.0.	Edge-Colorings and Spanning Cycles: 400.	1507
	5-Colorable and 5-Choosable: 402. The Four Color Problem: 404.	
	Discharging and Light Edges: 407.	
	Other Aspects of Discharging (optional): 412. Exercises: 417.	

Part III — Sets

Chapter 10 - Ramsey Theory.	425
10.1. The Pigeonhole Principle. Classical Applications: 426. Monotone Sublists: 430.	425
Pattern-Avoiding Permutations (optional): 431. Large Girth and Chromatic Number (optional): 434. Edge-Coloring of Hypergraphs (optional): 438. Exercises: 440.	
10.2. Ramsey's Theorem. The Main Theorem: 443. Applications: 445. Ramsey Numbers: 448. Graph Ramsey Theory: 453. Exercises: 458.	443
10.3. Further Topics. Van der Waerden's Theorem: 461. Infinite Sets (optional): 468. The Canonical Ramsey Theorem (optional): 470. Exercises: 473.	461
Chapter 11 - Extremal Problems.	475
11.1. Forced Subgraphs.	475
Turán's Theorem: 475. Erdős-Stone Theorem: 478. Linear Ramsey for Bounded Degree: 483. Roth's Theorem: 484. Proof of the Regularity Lemma (optional): 486. Exercises: 489.	
11.2. Families of Sets. The Kruskal–Katona Theorem: 493.	493
Antichains and Intersecting Families: 496. Chvátal's Conjecture: 501. Sunflowers (optional): 503. Entropy (optional): 504. Exercises: 510.	
11.3. Matroids. Hereditary Systems and Examples: 514. Axiomatics of Matroids: 519. Duality and Minors: 523. The Span Function: 527. Matroid Intersection: 529. Matroid Union: 533. Exercises: 536.	513
Chapter 12 - Partially Ordered Sets.	541
12.1. Structure of Posets. Definitions and Examples: 541. Dilworth's Theorem and Beyond: 546. Exercises: 549.	541
12.2. Symmetric Chains and LYM Orders. Graded Posets: 552. Symmetric Chain Decompositions: 553. LYM and Sperner Properties: 558.	552
Products of LYM Orders (optional): 562. Exercises: 564. 12.3. Linear Extensions and Dimension.	568
Order Dimension: 569. Computation and Bounds: 572. Bipartite Posets: 575. Exercises: 582.	500
12.4. Special Families of Posets. Semiorders and Interval Orders: 585. Lattices: 588. Distributive Lattices: 591. Correlational Inequalities: 595. A Problem in Ramsey Theory (optional): 601. Exercises: 604.	585

xi

Chapter 13 - Combinatorial Designs.	609
13.1. Arrangements. Latin Squares: 609. Block Designs: 612. Symmetric Designs: 615. Hadamard Matrices: 618. Exercises: 622.	609
13.2. Projective Planes. Relation to Designs: 624. Applications to Extremal Problems: 628. Difference Sets: 634. Exercises: 638.	624
13.3. Further Constructions. Steiner Triple Systems: 641. Graphical Designs: 645. Resolvable Designs and Other Tools: 648. The Euler Conjecture (optional): 651. Exercises: 654.	640
Part IV — Methods	
Chapter 14 - The Probabilistic Method.	657
14.1. Existence and Expectation.	657
The Union Bound: 658. Random Variables: 662. Exercises: 666. 14.2. Refinements of Basic Methods. Deletions and Alterations: 670. The Symmetric Local Lemma: 674. The General Local Lemma (optional): 679. Exercises: 684.	670
14.3. Moments and Thresholds. "Almost Always": 687. Threshold Functions: 690. Convergence of Moments: 694. Graph Evolution: 698. Exercises: 702.	686
14.4. Concentration Inequalities. Chebyshev and Chernoff Bounds: 706. Martingales: 712. Bounded Differences (optional): 719. Exercises: 721.	706
that revened Rantonale	
Chapter 15 - Linear Algebra.	723
15.1. Dimension and Polynomials. The Dimension Argument: 723. Restricted Intersections of Sets (optional): 727. Combinatorial Nullstellensatz: 732. The Alon–Tarsi Theorem: 738. Exercises: 744.	723
15.2. Matrices.	747
Determinants and Trees: 747. Cycle Space and Bond Space: 752. Permanents and Planar Graphs: 754.	
Möbius Inversion (optional): 757. Exercises: 762.	766
15.3. Eigenvalues. Spectra of Graphs: 766. Eigenvalues and Graph Parameters: 768 Regular and Strongly Regular Graphs: 772. Laplacian Eigenvalues: 776. Exercises: 780.	

Chapter 16 - Geometry and Topology.	783
16.1. Graph Drawings. Embeddings on Grids: 783. Crossing Number: 790. Exercises: 797.	783
16.2. Combinatorial Topology. Sperner's Lemma and Bandwidth: 799. Equivalent Topological Lemmas: 802. The Borsuk–Ulam Theorem: 806. Kneser Conjecture and Gale's Lemma: 811. Ham Sandwiches and Bisections: 815. Borsuk's Conjecture: 817. Exercises: 818.	798
16.3. Volumes and Containment. Monotone Subsequences: 821. Balanced Comparisons: 822. Containment Orders: 828. Exercises: 831.	821
Hints to Selected Exercises	833
References	849
Author Index	929
Glossary of Notation	943
Subject Index	949