Full contents

Prolog	xxi
The structure of physical chemistry	xxi
(a) The organization of science	• xxi
(b) The organization of our presentation	xxii
Applications of physical chemistry to biology and medicine	xxii
(a) Techniques for the study of biological systems	xxii
(b) Protein folding	xxiii
(c) Rational drug design	XXV
(d) Biological energy conversion	XXV
Fundamentals	1
F.1 Atoms, ions, and molecules	1
(a) Bonding and nonbonding interactions	. 1
(b) Structural and functional units	2
(c) Levels of structure	3
F.2 Bulk matter	en 4
(a) States of matter	4
(b) Physical state	5
(c) Equations of state	8
F.3 Energy	10
(a) Varieties of energy	11
(b) The Boltzmann distribution	13
Checklist of key concepts	17
Checklist of key equations	17
Discussion questions	18
Exercises	18
Projects	19
PART 1 Biochemical thermodynamics	21
	-
1 The First Law	23
The conservation of energy	23
1.1 Systems and surroundings	24
1.2 Work and heat	25
(a) Exothermic and endothermic processes	25
(b) The molecular interpretation of work and heat	26
(c) The molecular interpretation of temperature	26

Case study 1.1	Energy co	nversion in	organisms
----------------	-----------	-------------	-----------

1.3	The measurement of work	29
	(a) Sign conventions	29
	(b) Expansion work	30
	(c) Maximum work	31
	(C) WAXIMUM WORK	

27

1.4	The measurement of heat	32
	(a) Heat capacity	33
	(b) The molecular interpretation of heat capacity	34
Intern	al energy and enthalpy	34
1.5	The internal energy	35
	(a) Changes in internal energy	35
Exam	ole 1.1 Calculating the change in internal energy	36
	(b) The internal energy as a state function	37
10	(c) The First Law of thermodynamics	38
1.6	(a) The definition of optically	38
	(b) Changes in enthalpy	39
	(c) The temperature dependence of the enthalpy	41
In the	laboratory 1.1 Calorimetry	42
	(a) Bomb calorimeters	42
Exam	ble 1.2 Calibrating a calorimeter and measuring	
the en	ergy content of a nutrient	43
	(b) Isobaric calorimeters	44
	(c) Differential scanning calorimeters	44
Physic	al and chemical change	46
1.7	Enthalpy changes accompanying physical processes	46
	(a) Phase transitions	46
1.8	(b) Enthalpies of vaporization, fusion, and sublimation	47
Exam	ble 1.3. Using mean bond enthalpies	51
1.9	Thermochemical properties of fuels	52
Caso	tudy 1.2. Biological fuels	55
1 10	The combination of reaction onthelping	55
T.10	the combination of reaction enthalpies	57
t 11	Standard opthalpias of formation	58
801 Evener	Standard entrialples of formation	50
Examp	Sie 1.5 Using standard enthalples of formation	59
1.12	Entraiples of formation and computational chemistry	61
1.10		02
Examp	ble 1.6 Using Kirchhoff's law	63
Check	list of key concepts	64
Discus	sion questions	65
Exercis	Ses a restion second and a coldocarb of an any born	65
Projec	The chemical potential	68

viii FULL CONTENTS

2 The	Second Law	69
Entrop	y	70
2.1	The direction of spontaneous change	70
2.2	Entropy and the Second Law	71
	(a) The definition of entropy	71
	(b) The entropy change accompanying nearing	75
	(d) Entropy changes in the surroundings	77
2.3	Absolute entropies and the Third Law of thermodynamics	77
In the I	aboratory 2.1 The measurement of entropies	78
2.4	The molecular interpretation of the Second and Third Laws	80
	(a) The Boltzmann formula	80
	(b) The relation between thermodynamic and	01
	statistical entropy	82
25	Entropy changes accompanying chemical reactions	82
2.0	(a) Standard reaction entropies	82
	(b) The spontaneity of chemical reactions	83
The G	ibbs energy	84
2.6	Focusing on the system	84
	(a) The definition of the Gibbs energy	84
	(b) Spontaneity and the Gibbs energy	85
Cases	study 2.1 Life and the Second Law	85
2.7	The hydrophobic interaction	86
2.8	Work and the Gibbs energy change	88
Examp a meta	ole 2.1 Estimating a change in Gibbs energy for a second abolic process	89
Case	study 2.2 The action of adenosine triphosphate	90
Check	dist of key concepts	90
Check	dist of key equations	91
Discu	ssion questions	91
Exerci		91
Projec	ns anolitenent een (9. ia)	02
3 Ph	ase equilibria and road and strong to ended in 3 ki	94
The th	nermodynamics of transition	94
3.1	The condition of stability	94
3.2	The variation of Gibbs energy with pressure	95
3.3	The variation of Gibbs energy with temperature	90
3.4	(a) Phase boundaries	100
	(b) The location of phase boundaries	101
	(c) Characteristic points	103
	(d) The phase diagram of water	105
Phase	e transitions in biopolymers and aggregates	106
3.5	The stability of nucleic acids and proteins	106
Exam	ple 3.1 Predicting the melting temperature of DNA	107
3.6	Phase transitions of biological membranes	108
Case	study 3.1 The use of phase diagrams in the study	
of pro	oteins	109
The t	nermodynamic description of mixtures	110
3.7	The chemical potential	110
3.8	Ideal and ideal-dilute solutions	111

(a) The chemical potential of a gas	112
(b) The chemical potential of a solvent	112
(c) The chemical potential of a solute	114
Example 3.2 Determining whether a natural water can support aquatic life	116
Case study 3.2 Gas solubility and breathing	117
(d) Real solutions: activities	118
(a) Heal solutions, doubling	110
Case study 3.3 The Donnah equilibrium	110
Example 3.3 Analyzing a Donnan equilibrium	121
(e) The thermodynamics of dissolving	121
Colligative properties	122
3.9 The modification of boiling and freezing points	123
3.10 Osmosis	125
in the laboratory 3.1 Osmometry	127
Example 3.4 Determining the molar mass of an enzyme from	
measurements of the osmotic pressure	127
Checklist of key concepts	128
Checklist of key equations	129
Further information 3.1 The phase rule	129
Further information 3.2 Measures of concentration	130
Example 3.5 Relating mole fraction and molality	131
Discussion questions	132
Exercises	132
Projects	134
4 Chemical equilibrium	135
Thermodynamic background	135
4.1 The reaction Gibbs energy	135
4.2 The variation of $\Delta_r G$ with composition	137
(a) The reaction quotient	137
Example 4.1 Formulating a reaction quotient	138
(b) Biological standard states	139
(b) Biological station distances	
Example 4.2 Converting between thermodynamic and biological standard states	140
biological stational states	140
4.3 Reactions at equilibrium	140
(b) The composition at equilibrium	143
Example 4.3. Calculating an equilibrium composition	143
(a) The molecular origin of chemical equilibrium	144
(c) The molecular origin of chemical equilibrium	TheF
Case study 4.1 Binding of oxygen to myoglobin and hemoglobin	144
4.4 The standard reaction Gibbs energy	146
Example 4.4 Calculating the standard reaction Gibbs energy	1.2 N
of an enzyme-catalyzed reaction	146
(a) Standard Gibbs energies of formation	147
(b) Stability and instability	149
The response of equilibria to the conditions	149
4.5 The presence of a catalyst	150
4.6 The effect of temperature	150
Coupled reactions in bioenergetics	151
Case study 4.2 ATP and the biosynthesis of proteins	152

Case study 4.3 The oxidation of glucose	153
Proton transfer equilibria	156
4.7 Brønsted–Lowry theory	156
4.8 Protonation and deprotonation	157
(a) The strengths of acids and bases	158
(b) The pH of a solution of a weak acid	161
Example 4.5 Estimating the pH of a solution of a weak ac	id 161
(c) The pH of a solution of a weak base	163
Example 4.6 Estimating the pH of a solution of a weak ba	ise 163
(d) The extent of protonation and deprotonation	163
(e) The pH of solutions of salts	164
4.9 Polyprotic acids	164
Example 4.7 Calculating the concentration of carbonate ion in carbonic acid	• 165
Case study 4.4 The fractional composition of a solution	
of lysine	166
4.10 Amphiprotic systems	169
(a) The fractional composition of amino acid solutions	; 169
(b) The pH of solutions of amphiprotic anions	169
4.11 Buffer solutions	170
Example 4.8 Assessing buffer action	020101 172
Case study 4.5 Buffer action in blood	173
Checklist of key concepts	174
Checklist of key equations	175
Further information 4.1 The contribution of autoprotolysis	to pH 175
Further information 4.2 The pH of an amphiprotic salt solu	Ition 176
Discussion questions	1//
Projects	180
5 Thermodynamics of ion and electron transport	181
Transport of ions across biological membranes	181
5.1 lons in solution	181
(a) Activity coefficients	182
(b) Debye–Hückel theory	184
5.2 Passive and active transport of ions across biological membranes	186
Example 5.1 Estimating a membrane potential	187
5.3 Ion channels and ion pumps	188
Case study 5.1 Action potentials	188
Redox reactions	189
5.4 Half-reactions	190
Example 5.2 Expressing a reaction in terms of half-reaction	ons 190
Example 5.3 Writing the reaction quotient for a half-reaction	on 191
5.5 Reactions in electrochemical cells	192
(a) Galvanic and electrolytic cells	192
(b) Varieties of electrodes	194
(c) Electrochemical cell notation	194
5.6 The Nernst equation	195
5.7 Standard potentials	197
(a) Thermodynamic standard potentials	
	198
(b) Variation of potential with pH	198 198

Example 5.4 Converting a standard potential to a biological standard value	200
In the laboratory 5.1 Ion-selective electrodes	201
Applications of standard potentials5.8 The determination of thermodynamic functions(a) Calculation of the equilibrium constant	202 202 203
Example 5.5 Calculating the equilibrium constant of a biological electron transfer reaction	204
(b) Calculation of standard potentials Example 5.6 Calculating a standard potential from two other standard potentials	205 205
(c) Calculation of the standard reaction entropy and enthalpy5.9 The electrochemical series	206 207
Electron transfer in bioenergetics 5.10 The respiratory chain (a) Electron transfer reactions (b) Oxidative phosphorylation 5.11 Plant photosynthesis	207 207 208 208 209
Checklist of key concepts Checklist of key equations Discussion questions Exercises Project	211 212 212 212 212 215

PART	12 The kinetics of life processes	217
6 Th	e rates of reactions	219
React	ion rates	219
In the	laboratory 6.1 Experimental techniques	219
	(a) The determination of concentration	219
	(b) Monitoring the time dependence	220
6.1	The definition of reaction rate	221
6.2	Rate laws and rate constants	223
6.3	Reaction order	224
6.4	The determination of the rate law	225
	(a) Isolation and pseudo-order reactions	225
	(b) The method of initial rates	226
Exam	ole 6.1 Using the method of initial rates	227
6.5	Integrated rate laws	228
	(a) Zeroth-order reactions	228
	(b) First-order reactions	228
	(c) Second-order reactions	231
Case	study 6.1 Pharmacokinetics	234
The te	mperature dependence of reaction rates	235
6.6	The Arrhenius equation	235
Exam	ble 6.2 Determining the Arrhenius parameters	236
6.7	Preliminary interpretation of the Arrhenius parameters	237
Check	list of key concepts	239
Check	list of key equations	239
Discus	ssion questions	239
Exerci	ses	240
Projec	t	242

x FULL CONTENTS

7 Accounting for the rate laws	243
Reaction mechanisms	243
7.1 The approach to equilibrium	243
(a) The relation between equilibrium constants and	
rate constants	243
(b) The time-dependence of the approach to equilibrium	245
In the laboratory 7.1 Relaxation techniques in biochemistry	245
7.2 Elementary reactions	247
7.3 Consecutive reactions	249
(a) The variation of concentration with time	249
(b) The rate-determining step	201
Example 7.1 Identifying a rate-determining step	252
(c) The steady-state approximation	252
(d) Pre-equilibria	253
Case study 7.1 Mechanisms of protein folding and unfolding	254
7.4 Diffusion control	256
7.5 Kinetic and thermodynamic control	258
Reaction dynamics	259
7.6 Collision theory	259
7.7 Transition state theory	261
(a) Formulation of the theory	261
(b) Thermodynamic parameterization	262
In the laboratory 7.2 Time-resolved spectroscopy for kinetica	3 263
7.8 The kinetic salt effect	264
Example 7.2 Analyzing the kinetic salt effect	266
Checklist of key concepts	267
Checklist of key equations	267
Further information 7.1 Collisions in the gas phase	267
(a) The kinetic model of gases	267
(b) The Maxwell distribution of speeds	268
(c) Molecular collisions	269
Discussion questions	270
Projects	272
	R. E.S.
8 Complex biochemical processes	273
Enzymes	273
8.1 The Michaelis–Menten mechanism of enzyme catalysis	274
Example 8.1 Analyzing a Lineweaver–Burk plot	276
8.2 The analysis of complex mechanisms	277
(a) Sequential reactions	277
(b) Ping-pong reactions	278
8.3 The catalytic efficiency of enzymes	279
8.4 Enzyme inhibition	280
Example 8.2 Distinguishing between types of inhibition	282
Case study 8.1 The molecular basis of catalysis by	
hydrolytic enzymes	284
Transport across biological membranes	285
8.5 Molecular motion in liquids	28
8.6 Molecular motion across membranes	28
8.7 The mobility of ions	29
In the laboratory 8.1 Electrophoresis	29

Example 8.3 The isoelectric point of a protein	293
8.8 Transport across ion channels and ion pumps(a) The potassium channel(b) The proton pump	294 294 295
Electron transfer in biological systems 8.9 The rates of electron transfer processes 8.10 The theory of electron transfer processes 8.11 Experimental tests of the theory 8.12 The Marcus cross-relation	296 296 298 299 300
Example 8.4 Using the Marcus cross-relation	302
Checklist of key concepts Checklist of key equations Further information 8.1 Fick's laws of diffusion 1. Fick's first law of diffusion 2. Fick's second law Discussion questions Exercises Projects	303 303 304 304 304 304 305 305 305
PART 3 Biomolecular structure	311
9 Microscopic systems and quantization	313
Principles of quantum theony	NE CLAVOUR 313

9.1	The emergence of the quantum theory	314
	(a) Atomic and molecular spectra	314
	(b) Wave-particle duality	315
Examp	ble 9.1 Estimating the de Broglie wavelength of electrons	316
In the I	aboratory 9.1 Electron microscopy	317
9.2	The Schrödinger equation	318
	(a) The formulation of the equation	319
	(b) The interpretation of the wavefunction	320
Examp	ble 9.2 Interpreting a wavefunction	320
9.3	The uncertainty principle	321
Examp	ble 9.3 Using the uncertainty principle	322
Applic	ations of quantum theory	323
9.4	Translation	324
	(a) Motion in one dimension	324
Cases	study 9.1 The electronic structure of β-carotene	327
	(b) Tunneling	328
In the	aboratory 9.2 Scanning probe microscopy	329
	(c) Motion in two dimensions	330
9.5	Rotation	331
	(a) A particle on a ring	332
Cases	study 9.2 The electronic structure of phenylalanine	334
	(b) A particle on a sphere	334
9.6	Vibration	335
Case	study 9.3 The vibration of the N–H bond of	
the pe	ptide link	336
Hydro	genic atoms	337
9.7	The permitted energy levels of hydrogenic atoms	338
9.8	Atomic orbitals	339

FULL CONTENTS xi

387

387

	(a) Shells and subshells	340	10.7 Hückel theory
	(b) The shapes of s orbitals	341	(a) Ethene
	(c) The shapes of p orbitals	344	(b) Benzene
	(d) The shapes of d orbitals	345	Case study 10.3 The
The st	ructures of many-electron atoms	346	10.8 d-Metal comp
9.9	The orbital approximation and the Pauli exclusion principle	346	(a) Crystal field
9.10	Penetration and shielding	348	Example 10.3 Low-
9.11	The building-up principle	349	in hemoalobin
	(a) Neutral atoms	349	(b) Licand-field
	(b) Cations and anions	351	(c) Ligand-field
9.12	Three important atomic properties	352	
	(a) Atomic and ionic radii	352	Case study 10.4 Lig
	(b) Ionization energy	353	to hemoglobin
	(c) Electron affinity	355	Computational bioch
Cases	study 9.4 The biological role of Zn ²⁺	356	10.9 Computationa
Check	list of key concepts	357	(a) Semi-emp
Check	list of key equations	358	(b) Density fur
Furthe	r information 9.1 A justification of the Schrödinger		(c) Ab initio m
equati	on /	358	10.10 Graphical outp
Furthe	r information 9.2 The separation of variables procedure	359	10.11 The prediction
Furthe	r information 9.3 The Pauli principle	359	(a) Electroche
Discus	ssion questions	360	(b) Spectrosco
Exerci	Ses	360	(c) Chemical r
Projec	ts	363	Checklist of key conc
10 TI	ne chemical bond	364	Checklist of key equa
Valanc	veceby and reactive decay	365	Discussion questions
valenc	e bond theory	305	Exercises
t O t	Distanzia paglagulag	OCE	
10.1	Diatomic molecules	365	Projects
10.1	Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction	365 365 366	Projects
10.1	Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) a and a bonds	365 365 366	Projects 11 Macromolecul
10.1	 Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules 	365 365 366 366	Projects 11 Macromolecul Determination of size
10.1	Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion	365 365 366 366 367 368	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga
10.1	Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hubridization	365 365 366 366 367 368 368	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime
10.1	 Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hybridization 	365 365 366 366 367 368 368	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime (b) Sedimenta
10.1 10.2 Examp	 Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hybridization pole 10.1 Bonding in the peptide group 	365 365 366 366 367 368 368 368 371	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime (b) Sedimenta Example 11.1 The m
10.1 10.2 Examp	Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hybridization De 10.1 Bonding in the peptide group (c) Resonance	365 365 366 366 367 368 368 368 371 372	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime (b) Sedimenta Example 11.1 The m ultracentrifugation ex
10.1 10.2 Examp	 Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hybridization ble 10.1 Bonding in the peptide group (c) Resonance (d) The language of valence bonding 	365 365 366 366 367 368 368 368 371 372 372	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime (b) Sedimenta Example 11.1 The m ultracentrifugation ex 11.2 Mass spectror
10.1 10.2 Examp	Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hybridization (b) Hybridization (c) Resonance (d) The language of valence bonding ular orbital theory	 365 365 366 366 367 368 368 371 372 372 373 	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime (b) Sedimenta Example 11.1 The m ultracentrifugation ex 11.2 Mass spectror 11.3 Laser light sca
10.1 10.2 Examp Molec 10.3	Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hybridization ble 10.1 Bonding in the peptide group (c) Resonance (d) The language of valence bonding ular orbital theory Linear combinations of atomic orbitals	365 365 366 367 368 368 368 371 372 372 372 373 373	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime (b) Sedimenta Example 11.1 The m ultracentrifugation ex 11.2 Mass spectror 11.3 Laser light sca (a) Rayleigh sca
10.1 10.2 Examp Molec 10.3	Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hybridization ble 10.1 Bonding in the peptide group (c) Resonance (d) The language of valence bonding ular orbital theory Linear combinations of atomic orbitals (a) Bonding orbitals	365 365 366 367 368 368 368 371 372 372 372 373 373 373	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime (b) Sedimenta Example 11.1 The multracentrifugation ex 11.2 Mass spectror 11.3 Laser light sca (a) Rayleigh sca (a) Rayleigh sca
10.1 10.2 Examp Molec 10.3	Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hybridization De 10.1 Bonding in the peptide group (c) Resonance (d) The language of valence bonding ular orbital theory Linear combinations of atomic orbitals (a) Bonding orbitals (b) Antibonding orbitals	365 365 366 367 368 368 371 372 372 372 373 373 373 373	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime (b) Sedimenta Example 11.1 The multracentrifugation ex 11.2 Mass spectror 11.3 Laser light sca (a) Rayleigh sc Example 11.2 Determant a protein by laser light
10.1 10.2 Examp Molect 10.3	Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hybridization (c) Resonance (c) Resonance (d) The language of valence bonding ular orbital theory Linear combinations of atomic orbitals (a) Bonding orbitals (b) Antibonding orbitals (c) Inversion symmetry	365 365 366 367 368 368 371 372 372 372 373 373 373 374 375	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime (b) Sedimenta Example 11.1 The multracentrifugation exp 11.2 Mass spectror 11.3 Laser light sca (a) Rayleigh sc Example 11.2 Determant a protein by laser light
10.1 10.2 Examp Molecc 10.3	Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hybridization (c) Resonance (d) The language of valence bonding ular orbital theory Linear combinations of atomic orbitals (a) Bonding orbitals (b) Antibonding orbitals (c) Inversion symmetry Homonuclear diatomic molecules	365 365 366 367 368 368 371 372 372 372 373 373 373 373 374 375 375	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime (b) Sedimenta Example 11.1 The m ultracentrifugation ex 11.2 Mass spectror 11.3 Laser light sca (a) Rayleigh sc Example 11.2 Determ a protein by laser ligh (b) Dynamic lig
10.1 10.2 Examp Molec 10.3	Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hybridization (b) Hybridization (c) Resonance (d) The language of valence bonding ular orbital theory Linear combinations of atomic orbitals (a) Bonding orbitals (b) Antibonding orbitals (c) Inversion symmetry Homonuclear diatomic molecules (a) Criteria for the formation of molecular orbitals	365 365 366 367 368 368 371 372 372 373 373 373 373 373 374 375 375 376	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime (b) Sedimenta Example 11.1 The m ultracentrifugation ex 11.2 Mass spectror 11.3 Laser light sca (a) Rayleigh sca (a) Rayleigh sca (b) Dynamic light (b) Dynamic light (c) Dynamic ligh
10.1 10.2 Examp Molecc 10.3 10.4 Examp	Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hybridization ble 10.1 Bonding in the peptide group (c) Resonance (d) The language of valence bonding ular orbital theory Linear combinations of atomic orbitals (a) Bonding orbitals (b) Antibonding orbitals (c) Inversion symmetry Homonuclear diatomic molecules (a) Criteria for the formation of molecular orbitals ble 10.2 Assessing the contribution of d orbitals	365 365 366 367 368 368 368 371 372 372 373 373 373 373 373 374 375 375 376 378	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime (b) Sedimenta Example 11.1 The multracentrifugation ex 11.2 Mass spectror 11.3 Laser light sca (a) Rayleigh sc Example 11.2 Determan a protein by laser ligh (b) Dynamic light (c) Dyna
10.1 10.2 Examp 10.3 10.4 Examp	Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hybridization (c) Resonance (d) The language of valence bonding ular orbital theory Linear combinations of atomic orbitals (a) Bonding orbitals (b) Antibonding orbitals (c) Inversion symmetry Homonuclear diatomic molecules (a) Criteria for the formation of molecular orbitals (b) The hydrogen molecule	365 365 366 367 368 368 371 372 372 373 373 373 373 374 375 375 376 378 379	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime (b) Sedimenta Example 11.1 The multracentrifugation exp 11.2 Mass spectror 11.3 Laser light sca (a) Rayleigh sc Example 11.2 Deterr a protein by laser ligh (b) Dynamic ligh 11.4 X-ray crystallog (a) Diffraction (b) Crystal sys (c) Crystal basi
10.1 10.2 Examp 10.3 10.4 Examp	Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hybridization (c) Resonance (d) The language of valence bonding Ular orbital theory Linear combinations of atomic orbitals (a) Bonding orbitals (b) Antibonding orbitals (c) Inversion symmetry Homonuclear diatomic molecules (a) Criteria for the formation of molecular orbitals (b) The hydrogen molecule (c) Many-electron homonuclear diatomic molecules	365 365 366 367 368 368 371 372 372 373 373 373 373 373 374 375 375 376 378 379 380	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime (b) Sedimenta Example 11.1 The multracentrifugation exp 11.2 Mass spectror 11.3 Laser light sca (a) Rayleigh sc Example 11.2 Determan a protein by laser light (b) Dynamic light 11.4 X-ray crystallogi (a) Diffraction (b) Crystal sys (c) Crystal plan
10.1 10.2 Examp 10.3 10.4 Examp	 Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hybridization ble 10.1 Bonding in the peptide group (c) Resonance (d) The language of valence bonding ular orbital theory Linear combinations of atomic orbitals (a) Bonding orbitals (c) Inversion symmetry Homonuclear diatomic molecules (a) Criteria for the formation of molecular orbitals (b) The hydrogen molecule (c) Many-electron homonuclear diatomic molecules (d) Bond order 	365 365 366 367 368 368 371 372 372 373 373 373 373 373 373 373 375 376 376 378 379 380 382	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime (b) Sedimenta Example 11.1 The m ultracentrifugation ex 11.2 Mass spectror 11.3 Laser light sca (a) Rayleigh sc Example 11.2 Determ a protein by laser light (b) Dynamic lig 11.4 X-ray crystallog (a) Diffraction (b) Crystal sys (c) Crystal plan Example 11.3 Using
10.1 10.2 Examp Molecc 10.3 10.4 Examp Case s	Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hybridization ble 10.1 Bonding in the peptide group (c) Resonance (d) The language of valence bonding ular orbital theory Linear combinations of atomic orbitals (a) Bonding orbitals (b) Antibonding orbitals (c) Inversion symmetry Homonuclear diatomic molecules (a) Criteria for the formation of molecular orbitals (b) The hydrogen molecule (c) Many-electron homonuclear diatomic molecules (d) Bond order study 10.1 The biochemical reactivity of O ₂ and N ₂	365 365 366 367 368 368 371 372 372 373 373 373 373 373 373 374 375 376 376 378 379 380 382	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime (b) Sedimenta Example 11.1 The multracentrifugation ex 11.2 Mass spectror 11.3 Laser light sca (a) Rayleigh sc Example 11.2 Deterr a protein by laser ligh (b) Dynamic ligh (b) Dynamic ligh 11.4 X-ray crystallog (a) Diffraction (b) Crystal sys (c) Crystal plan Example 11.3 Using (d) Bragg's law
10.1 10.2 Examp Molec: 10.3 10.4 Examp Case s 10.5	Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hybridization (c) Resonance (d) The language of valence bonding ular orbital theory Linear combinations of atomic orbitals (a) Bonding orbitals (b) Antibonding orbitals (c) Inversion symmetry Homonuclear diatomic molecules (a) Criteria for the formation of molecular orbitals (b) The hydrogen molecule (c) Many-electron homonuclear diatomic molecules (d) Bond order study 10.1 The biochemical reactivity of O ₂ and N ₂ Heteronuclear diatomic molecules	365 365 366 367 368 368 371 372 372 373 373 373 373 373 373 374 375 376 376 378 379 380 382 382 384	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime (b) Sedimenta Example 11.1 The multracentrifugation exp 11.2 Mass spectror 11.3 Laser light sca (a) Rayleigh sc Example 11.2 Determan a protein by laser light (b) Dynamic light (b) Dynamic light (c) Crystal plate Example 11.3 Using (d) Bragg's law Example 11.4 Using
10.1 10.2 Examp 10.3 10.4 Examp Case s 10.5	Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hybridization (c) Resonance (c) Resonance (d) The language of valence bonding ular orbital theory Linear combinations of atomic orbitals (a) Bonding orbitals (b) Antibonding orbitals (c) Inversion symmetry Homonuclear diatomic molecules (a) Criteria for the formation of molecular orbitals (b) The hydrogen molecule (c) Many-electron homonuclear diatomic molecules (d) Bond order (d) Polarity and electronegativity	365 365 366 367 368 368 371 372 372 372 373 373 373 373 373 373 373	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime (b) Sedimenta Example 11.1 The m ultracentrifugation ex 11.2 Mass spectror 11.3 Laser light sca (a) Rayleigh sc Example 11.2 Deterr a protein by laser ligh (b) Dynamic lig 11.4 X-ray crystallog (a) Diffraction (b) Crystal sys (c) Crystal plan Example 11.3 Using (d) Bragg's law Example 11.4 Using (e) Fourier sym
10.1 10.2 Examp 10.3 10.4 Examp Case s 10.5	Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hybridization (c) Resonance (d) The language of valence bonding Ular orbital theory Linear combinations of atomic orbitals (a) Bonding orbitals (b) Antibonding orbitals (c) Inversion symmetry Homonuclear diatomic molecules (a) Criteria for the formation of molecular orbitals (b) The hydrogen molecule (c) Many-electron homonuclear diatomic molecules (d) Bond order study 10.1 The biochemical reactivity of O ₂ and N ₂ Heteronuclear diatomic molecules (a) Polarity and electronegativity (b) Molecular orbitals in heteronuclear species	365 365 366 367 368 368 371 372 372 372 373 373 373 373 373 374 375 375 376 378 379 380 382 382 382 384 384	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime (b) Sedimenta Example 11.1 The m ultracentrifugation exp 11.2 Mass spectror 11.3 Laser light sca (a) Rayleigh sc Example 11.2 Deterr a protein by laser ligh (b) Dynamic lig 11.4 X-ray crystallog (a) Diffraction (b) Crystal sys (c) Crystal plan Example 11.3 Using (d) Bragg's law Example 11.4 Using (e) Fourier syn Example 11.5 Calcul
10.1 10.2 Examp Molecc 10.3 10.4 Examp Case s 10.5	Diatomic molecules (a) Formulation of the VB wavefunction (b) The energy of interaction (c) σ and π bonds Polyatomic molecules (a) Promotion (b) Hybridization be 10.1 Bonding in the peptide group (c) Resonance (d) The language of valence bonding ular orbital theory Linear combinations of atomic orbitals (a) Bonding orbitals (b) Antibonding orbitals (c) Inversion symmetry Homonuclear diatomic molecules (a) Criteria for the formation of molecular orbitals (b) The hydrogen molecule (c) Many-electron homonuclear diatomic molecules (d) Bond order study 10.1 The biochemical reactivity of O ₂ and N ₂ Heteronuclear diatomic molecules (a) Polarity and electronegativity (b) Molecular orbitals in heteronuclear species study 10.2 The biochemicater of NO	365 365 366 367 368 368 371 372 372 372 373 373 373 373 373 373 373	Projects 11 Macromolecul Determination of size 11.1 Ultracentrifuga (a) The sedime (b) Sedimenta Example 11.1 The m ultracentrifugation ex 11.2 Mass spectror 11.3 Laser light sca (a) Rayleigh sc Example 11.2 Detern a protein by laser light (b) Dynamic lig 11.4 X-ray crystallog (a) Diffraction (b) Crystal sys (c) Crystal plan Example 11.3 Using (d) Bragg's law Example 11.4 Using (e) Fourier syn Example 11.5 Calcul synthesis

10.6 The structures of polyatomic molecules

387

Case s	study 10.3 The unique role of carbon in biochemistry	391
10.8	d-Metal complexes	392
	(a) Crystal field theory	392
Evomr	le 10.3 Low- and high-spin complexes of Fe(II)	
n hem	ioglobin	394
in ion	(b) Lineard field theory - heading	204
	(b) Ligand-field theory: a bonding	394
	(c) Ligand-field theory: π bonding	390
Case s	study 10.4 Ligand-field theory and the binding of O ₂	397
0 11011	n of structures	000
Comp	utational biochemistry	398
10.9	Computational techniques	398
	(a) Semi-empirical methods	399
	(b) Density functional theory	399
	(c) Ab initio methods	400
10.10	Graphical output abiupli bits see ap tisbio laminiM	400
10.11	The prediction of molecular properties	400
	(a) Electrochemical properties	401
	(b) Spectroscopic properties	401
	(c) Chemical reactivity	402
Check	list of key concepts	402
Check	list of key equations	403
Discus	sion questions	403
Exercis	ses	404
Projec	ts	406
2444	(a) Micelles	107
1 1 1 1 1	aaromoloouloo and colt accombly	
	acromolecules and self-assembly	407
Detern	nination of size and shape	407
Detern 11.1	nination of size and shape Ultracentrifugation	407 407 407
Detern 11.1	nination of size and shape Ultracentrifugation (a) The sedimentation rate	407 407 407 408
Detern 11.1	nination of size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium	407 407 407 408 409
Detern 11.1	nination of size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium ble 11.1 The molar mass of a protein from	407 407 407 408 409
Detern 11.1 Examp	nination of size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium ole 11.1 The molar mass of a protein from entrifugation experiments	407 407 408 409 409
Detern 11.1 Examp ultrace	nination of size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium ole 11.1 The molar mass of a protein from entrifugation experiments Mass spectrometry	407 407 407 408 409 409 410
Detern 11.1 Examp ultrace 11.2 11.3	Action of size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium ble 11.1 The molar mass of a protein from entrifugation experiments Mass spectrometry Laser light scattering	407 407 407 408 409 409 410 412
Detern 11.1 Examp ultrace 11.2 11.3	Action for size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium ole 11.1 The molar mass of a protein from entrifugation experiments Mass spectrometry Laser light scattering (a) Ravleigh scattering	407 407 407 408 409 409 410 412 412
Detern 11.1 Examp ultrace 11.2 11.3	 action of size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium ble 11.1 The molar mass of a protein from intrifugation experiments Mass spectrometry Laser light scattering (a) Rayleigh scattering 	407 407 408 409 409 410 412 412
Determ 11.1 Examp ultrace 11.2 11.3 Examp	nination of size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium ble 11.1 The molar mass of a protein from entrifugation experiments Mass spectrometry Laser light scattering (a) Rayleigh scattering ble 11.2 Determining the molar mass and size of ein by laser light scattering	407 407 408 409 409 410 412 412 413
Detern 11.1 Examp ultrace 11.2 11.3 Examp a prote	Action of size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium ole 11.1 The molar mass of a protein from entrifugation experiments Mass spectrometry Laser light scattering (a) Rayleigh scattering ole 11.2 Determining the molar mass and size of ein by laser light scattering	407 407 408 409 409 410 412 412 413 414
Detern 11.1 Examp ultrace 11.2 11.3 Examp a prote	 action for size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium ble 11.1 The molar mass of a protein from entrifugation experiments Mass spectrometry Laser light scattering (a) Rayleigh scattering (b) Laser light scattering (c) Dynamic light scattering (c) Dynamic light scattering 	407 407 408 409 409 410 412 412 412 413 414
Detern 11.1 Exampultrace 11.2 11.3 Exampa prote	 action of size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium ble 11.1 The molar mass of a protein from intrifugation experiments Mass spectrometry Laser light scattering (a) Rayleigh scattering (b) 11.2 Determining the molar mass and size of bin by laser light scattering (b) Dynamic light scattering (c) Diffraction 	407 407 408 409 409 410 412 412 412 413 414 414
Example 11.1 Example 11.2 11.3 Example Example 11.4	 action of size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium be 11.1 The molar mass of a protein from antrifugation experiments Mass spectrometry Laser light scattering (a) Rayleigh scattering (b) Dynamic light scattering (a) Dynamic light scattering (b) Dynamic light scattering (c) Dynamic light scattering (a) Diffraction (b) Constal cystams 	407 407 408 409 409 410 412 412 412 413 414 414 415 415
Example Example 11.2 11.3 Example a prote	 action of size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium be 11.1 The molar mass of a protein from antrifugation experiments Mass spectrometry Laser light scattering (a) Rayleigh scattering be 11.2 Determining the molar mass and size of ein by laser light scattering (b) Dynamic light scattering (c) Crystal systems (c) Crystal planes 	407 407 408 409 409 410 412 412 412 413 414 414 414 415 415 416
Example Example III.2 III.2 III.3 Example III.4	 action of size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium ble 11.1 The molar mass of a protein from antrifugation experiments Mass spectrometry Laser light scattering (a) Rayleigh scattering ble 11.2 Determining the molar mass and size of ain by laser light scattering (b) Dynamic light scattering (c) Crystal systems (c) Crystal planes 	407 407 408 409 409 410 412 412 412 412 413 414 414 415 415 416
Determ 11.1 Examp ultrace 11.2 11.3 Examp 11.4 Examp	 action of size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium be 11.1 The molar mass of a protein from antrifugation experiments Mass spectrometry Laser light scattering (a) Rayleigh scattering (b) Laser light scattering (b) Dynamic light scattering (c) Crystal systems (c) Crystal planes be 11.3 Using the Miller indices	407 407 408 409 409 410 412 412 412 413 414 414 415 415 416 418
Example The formation of the formation o	 action of size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium be 11.1 The molar mass of a protein from intrifugation experiments Mass spectrometry Laser light scattering (a) Rayleigh scattering be 11.2 Determining the molar mass and size of ein by laser light scattering (b) Dynamic light scattering X-ray crystallography (a) Diffraction (b) Crystal systems (c) Crystal planes be 11.3 Using the Miller indices (d) Bragg's law 	407 407 408 409 409 410 412 412 412 413 414 414 414 415 415 416 418 419
Example Example Example Example Example Example Example	 action of size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium be 11.1 The molar mass of a protein from antrifugation experiments Mass spectrometry Laser light scattering (a) Rayleigh scattering be 11.2 Determining the molar mass and size of bin by laser light scattering (b) Dynamic light scattering (a) Diffraction (b) Crystal systems (c) Crystal planes be 11.3 Using the Miller indices (d) Bragg's law 	407 407 408 409 409 410 412 412 412 413 414 414 415 415 416 418 419 419
Determ 11.1 Examp ultrace 11.2 11.3 Examp 11.4 Examp Examp	 action of size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium be 11.1 The molar mass of a protein from antrifugation experiments Mass spectrometry Laser light scattering (a) Rayleigh scattering be 11.2 Determining the molar mass and size of ein by laser light scattering (b) Dynamic light scattering (c) Crystal systems (c) Crystal planes be 11.3 Using the Miller indices (d) Bragg's law (e) Fourier synthesis	407 407 408 409 409 410 412 412 412 413 414 414 414 415 415 416 418 419 419 420
Example Example III.2 III.2 III.2 III.3 Example III.4	 action of size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium be 11.1 The molar mass of a protein from antrifugation experiments Mass spectrometry Laser light scattering (a) Rayleigh scattering be 11.2 Determining the molar mass and size of ein by laser light scattering (b) Dynamic light scattering (c) Crystal systems (c) Crystal planes (d) Bragg's law (e) Fourier synthesis 	407 407 408 409 409 410 412 412 412 412 412 413 414 414 415 416 418 419 419 420
Determ 11.1 Examp ultrace 11.2 11.3 Examp 11.4 Examp Examp	 action of size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium ble 11.1 The molar mass of a protein from antrifugation experiments Mass spectrometry Laser light scattering (a) Rayleigh scattering (b) Dynamic light scattering (c) Crystal systems (c) Crystal planes (d) Bragg's law (e) Fourier synthesis 	407 407 408 409 409 410 412 412 412 413 414 414 415 415 416 418 419 419 420
Determ 11.1 Examp ultrace 11.2 11.3 Examp 11.4 Examp Examp Examp	 action of size and shape Ultracentrifugation (a) The sedimentation rate (b) Sedimentation equilibrium be 11.1 The molar mass of a protein from antrifugation experiments Mass spectrometry Laser light scattering (a) Rayleigh scattering (b) Dynamic light scattering (b) Dynamic light scattering (c) Crystal systems (c) Crystal planes be 11.3 Using the Miller indices (d) Bragg's law be 11.4 Using Bragg's law (e) Fourier synthesis (b) Environments	407 407 408 409 409 410 412 412 412 413 414 414 415 415 416 418 419 419 420

xii FULL CONTENTS

In the I	aboratory 11.2 Data acquisition in X-ray crystallography	422
Case s studies	study 11.1 The structure of DNA from X-ray diffraction	423
The co	ontrol of shape	424
11.5	Interactions between partial charges	425
11.6	Electric dipole moments	426
Examp	ble 11.6 Calculating the dipole moment of	
the pe	ptide group	428
11.7	Interactions between dipoles	429
11.8	Induced dipole moments	431
	(a) Dipole-induced-dipole interactions	432
	(b) Dispersion interactions	432
11.9	Hydrogen bonding	433
11.10	The total interaction	435
Case s	study 11.2 Molecular recognition in biology and	
pharm	acology	437
Levels	of structure	438
11.11	Minimal order: gases and liquids	438
11.12	Random coils	440
	(a) Measures of size	440
	(b) Conformational entropy	441
11.13	Proteins	442
	(a) The secondary structure of a protein	442
	(b) Higher-order structures of proteins	445
11.14	Nucleic acids	446
11.15	Polysaccharides	448
11.16	Micelles and biological membranes	449
	(a) Micelles	449
	(b) Bilayers, vesicles, and membranes	450
	(c) Interactions between proteins and biological membranes	450
11.17	Computer-aided simulation	451
	(a) Molecular mechanics calculations	451
	(b) Molecular dynamics and Monte Carlo simulations	451
	(c) Quantitative structure-activity relationships	453
Check	dist of key concepts	455
Check	dist of key equations	456
Discus	ssion questions	457
Exerci	ses	457
Projec	ts	460
	ple 11.2. Determining the molar mass and easy of	mne i
PART	4 Biochemical spectroscopy	461
12 0	ptical spectroscopy and photobiology	463
Gener	al features of spectroscopy	463
In the	laboratory 12.1 Experimental techniques	464
12.1	The intensities of spectroscopic transitions:	
	empirical aspects	466
	(a) The Beer–Lambert law	466
Even	ale 12.1. The malar absorption coefficient of tryptophan	167

Examp	ole 12.1 The molar absorption coefficient of tryptophan	407
	(b) The determination of concentration	468
12.2	The intensities of transitions: theoretical aspects	469
	(a) The transition dipole moment	469

(b) Stimulated and spontaneous transitions	470
 (c) Populations and intensities (d) Linewidths 	471
(a) Enewiding	173
In the laboratory 12.2 biosensor analysis	470
Vibrational spectra	474
Everyple 12.0. The effect of instance substitution on	
the vibrational frequency of O_2	475
12.4 Vibrational transitions	476
(a) Infrared transitions	476
Example 12.3 Identifying species that contribute to	170
climate change	476
(b) Raman transitions	478
 12.5 The vibrations of polyatomic molecules (a) Normal modes 	470
(b) Infrared transitions	480
(c) Raman transitions	481
Case study 12.1 Vibrational spectroscopy of proteins	482
In the laboratory 12.3 Vibrational microscopy	483
Ultraviolet and visible spectra	485
12.6 The Franck–Condon principle	486
12.7 Chromophores	487
12.8 Optical activity and circular dichroism	488
Radiative and non-radiative decay	490
12.9 Fluorescence	490
12.10 Phosphorescence	491
In the laboratory 12.4 Fluorescence microscopy	492
In the laboratory 12.5 Single-molecule spectroscopy	493
Photobiology	494
12.11 The kinetics of decay of excited states	494
12.12 Fluorescence quenching	497
(d) The experimental analysis	10
Example 12.4 Determining the quenching rate constant	498
(b) Mechanisms of quenching	498 500
Case study 12.2. Vicion	501
Case study 12.2 Photosynthesis	503
Case study 12.0 Thotosynthesis	504
Case study 12.5 Detecturgenic therapy	505
	500
Checklist of key equations	507
Discussion questions	508
Exercises	508
Projects	51
13 Magnetic resonance	514
Principles of magnetic resonance	514
13.1 Electrons and nuclei in magnetic fields	515
13.2 The intensities of NMR and EPR transitions	517

The information in NMR spectra	519	The information in EPR spectra	537
13.3 The chemical shift	519	13.10 The g-value	538
(a) The δ scale	520	13.11 Hyperfine structure	539
(b) Contributions to the shift	521	Example 13.3. Predicting the byperfine structure of an	
13.4 The fine structure	522	EPB spectrum	540
(a) The appearance of fine structure	522	In the laboratory 13.3 Spin probes	540
Example 13.1 Accounting for the fine structure in a spectrum	524	Checklist of key concepts	541
(b) The origin of fine structure	525	Checklist of key equations	542
13.5 Conformational conversion and chemical exchange	527	Discussion questions Exercises	543 543
Example 13.2 Interpreting line broadening	527	Projects	545
Pulse techniques in NMR	528	Resource section	
13.6 Time- and frequency-domain signals	528	1 Atlas of structures	546
13.7 Spin relaxation	530	2 Units	558
In the laboratory 13.1 Magnetic resonance imaging	531	3 Data	560
13.8 Proton decoupling	533	Answers to odd-numbered exercises	573
13.9 The nuclear Overhauser effect	533	Index of Tables	577
In the laboratory 13.2 Two-dimensional NMR	535	Index	579
Case study 13.1. The COSY spectrum of isoleucine	536		

abirol is the province of the

spiriture of the start of the second start with the second start of the second start o

which we mean quick numerical exercises) and Worked examples, which feature of the burget complex calculations than do the ultistrations. Third, a unique feature of the nore complex calculations than do the ultistrations. Third, a unique feature of the read is the use of Case studies to develop mate in vice of the tables are the use of Case studies to develop mate in vice of the tables of the user of the unique to be of carbon in bucket are the of the studies are the unique to be of carbon in bucket are the to be themselved and and the unique to be of carbon in bucket are to be the other themselve of the unique to be of carbon in bucket are to be themselved and the unique to be of carbon in bucket are to be the chemistry of mitre order. The unique to be of carbon in bucket are to be the selected experimental techniques in modern buchemistry and big to as differential scanning calorisetery, gel electrophomist efficient mitroscopy, and as differential scanning calorisetery, gel electrophomist efficient mitroscopy, and magnetic resonance imaging.

All the illustrations (nearly 500 of them) have been redrawn and are now in full color. Another innovation in this edition is the Atlas of structures, in the Resource section at the end of the book. Many biochemically important structures are referred to a number of times in the text, and we judged it appropriate and convenient to collect them all in one place. The Resource section also includes data used in a variety of places in the text.