Contents

Acknowledgements	xiii
Prolegomenon	xvii
Matter and English	Intormal
1. Matter and Energy	1
1.1 What is Energy?	1
1.2 What is Mass?	7
1.3 Is There Continuity?	21
1.4 Who Understands Quantum Mechanics?	35
1.5 What Are We to Call Ultimately Elementary?	48
1.6 How Large is Zero?	60
1.7 Are We the Dust of Stars?	72
1.8 The Universe: A Finite Island in an Infinite Ocean of Space?	88
1.9 Symmetry: A Priori or A Posteriori?	107
1.10 Why "All That"?	119
LITERATURE AND NOTES	126
2. Energy and Entropy	139
2.1 Who's Afraid of?	139
2.2 Gibbs' Paradox: How Equal is "Equal"?	153
2.3 How Real is the Microstate?	161
2.4 Probability: Expectation, Frequency or Fuzziness?	166
2.5 How Real is the Macrostate?	172
2.6 How Many Trees Make a Wood?	178
2.7 Can Arbitrarily Complex Chemical Systems Ever Reach	50 N 93
Detailed Balance?	188
2.8 How is Entropy Related to Order?	197
2.9 Who Keeps Our Clocks Running?	207
2.10 Entropy: What Does It Mean?	214
LITERATURE AND NOTES	221

3. Entropy and Information	227
3.1 Who Informs the Demon?	227
3.2 Information = Entropy?	232
3.3 Whose Information Is It?	243
3.4 Why Coding?	249
3.5 Do We Live in a Markovian World?	269
3.6 How Much Information is in Mathematics?	272
3.7 Can a Turing Machine Create Information?	283
3.8 Whose Information is in Our Genes?	287
3.9 How Far is it from Shannon to Darwin?	299
3.10 Where is the "Temperature" of Information?	306
LITERATURE AND NOTES	311
4. Information and Complexity	317
4.1 How Complex is Chemistry?	317
4.2 How Does Nature Tame Chemical Complexity?	333
4.3 An Unsolved Mathematical Problem: $P = NP$?	344
4.4 Are We Points in Hilbert Space?	354
4.5 Hyperspace: Trick or Treat?	372
4.6 How Does Matter Move in Physical Space?	387
4.7 And How to Get from Here to There in Information	
Space?	404
4.8 Can a Simplex be Complex?	423
4.9 What Does "Meaning" Mean?	436
4.10 Pure Thought = Poor Thought?	449
LITERATURE AND NOTES	461
5. Complexity and Self-Organisation	475
5 1 What is Life - Now?	475
5.1 What is Life - Now:	4/5
5.2 Does Natural Selection Require Linear Autocatalysis?	497
5.5 Who Survives the Fittest or the Luckiest?	522
5.5 Natural Selection: A Phase Transition?	523
5.6 Was the Watchmaker Really Blind?	545
5.7 Where is the "Edge of Chaos"?	552
5.8 Why Care What Other People Think?	553
5.9 An Ultimate Machine?	575
5.10 "It from Bit" or "Bit from It"?	590
LITEDATIDE AND NOTES	602
LIIERATORE AND NOIES	003

xi | CONTENTS

Conclusion	614
APPENDICES TO CHAPTER 1	
A1.1 Manifestations of Energy in the Physical Universe	625
A1.2 Mathematical Concepts in Physics (by Peter Richter)	629
APPENDIX TO CHAPTER 2	
A2 The Nature of Physical Phase Transitions	639
APPENDIX TO CHAPTER 3	
A ₃ On the Nature of Mathematical Proof	651
APPENDIX TO CHAPTER 4	
A4 The Mathematics of Darwinian Systems (by Peter Schuster)	667
APPENDIX TO CHAPTER 5	
A5 Kinetics of Multistep Replication	701
Author Index	717
Subject Index	724