TOPOLOGY A Categorical Approach

Tai-Danae Bradley, Tyler Bryson, and John Terilla

This graduate-level textbook on topology takes a unique approach: it reintroduces basic, point-set topology from a more modern, categorical perspective. Many graduate students are familiar with the ideas of point-set topology and they are ready to learn something new about them. Teaching the subject using category theory—a contemporary branch of mathematics that provides a way to represent abstract concepts—both deepens students' understanding of elementary topology and lays a solid foundation for future work in advanced topics.

Tai-Danae Bradley is a PhD mathematics graduate from the CUNY Graduate Center and creator of the popular math blog, Math3ma. Tyler Bryson is a PhD candidate in mathematics at the CUNY Graduate Center. John Terilla is Professor of Mathematics at Queens College and on the Doctoral Faculty at the CUNY Graduate Center.

"This book is at the leading edge of what will likely become a major pedagogical trend in mathematics: teaching the fundamentals from a categorical perspective. "—David Spivak, Research Scientist at MIT, author of Category Theory for the Sciences

"As an algebraic topologist who has taught point-set topology from an implicitly category-theoretic viewpoint for many years, I was delighted to discover this beautifully written textbook."—Kathryn Hess, Professor, EPFL

"Bradley, Bryson, and Terilla make a compelling case for approaching category theory through point-set topology, imparting a lovely point of view that enlivens both subjects."—Emily Riehl, Associate Professor, Johns Hopkins University, author of Categorical Homotopy Theory and Category Theory in Context

"The categorical approach used is not only well motivated, but presented in a style that is very user-friendly."

—Jim Stasheff, Professor Emeritus UNC-CH; Visiting Researcher at the University of Pennsylvania; coauthor of Characteristic Classes

Cover art: London Tsai, Hopf Fibration, 2018

THE MIT PRESS

Massachusetts Institute of Technology
Cambridge, Massachusetts 02142

http://mitpress.mit.edu

	Pref	ace		ix		
0	Preliminaries					
	0.1	Basic	Topology	1		
	0.2	Basic	Category Theory	3		
		0.2.1	Categories	3		
		0.2.2	Functors	9		
		0.2.3	Natural Transformations and the Yoneda Lemma	11		
	0.3	Basic Set Theory		14		
		0.3.1	Functions	14		
		0.3.2	The Empty Set and One-Point Set	15		
		0.3.3	Products and Coproducts in Set	15		
		0.3.4	Products and Coproducts in Any Category	17		
		0.3.5	Exponentiation in Set	17		
		0.3.6	Partially Ordered Sets	18		
		Exerc	rises	19		
1	Examples and Constructions					
	1.1	Examples and Terminology		21		
		1.1.1	Examples of Spaces	21		
	4	1.1.2	Examples of Continuous Functions	23		
	1.2	The S	Subspace Topology	25		
		1.2.1	The First Characterization	25		
		1.2.2	The Second Characterization	26		
	1.3	The Q	Quotient Topology	28		
		1.3.1	The First Characterization	28		
		1.3.2	The Second Characterization	29		
	1.4	1.4 The Product Topology				
		1.4.1	The First Characterization	30		
		1.4.2	The Second Characterization	31		

	1.5	The Coproduct Topology	32	
		1.5.1 The First Characterization	32	
		1.5.2 The Second Characterization	33	
	1.6	Homotopy and the Homotopy Category	34	
		Exercises	36	
2	Connectedness and Compactness			
	2.1	Connectedness	39	
		2.1.1 Definitions, Theorems, and Examples	39	
		2.1.2 The Functor π_0	43	
		2.1.3 Constructions and Connectedness	44	
		2.1.4 Local (Path) Connectedness	46	
	2.2	Hausdorff Spaces		
	2.3	Compactness	48	
		2.3.1 Definitions, Theorems, and Examples	48	
		2.3.2 Constructions and Compactness	50	
		2.3.3 Local Compactness	51	
		Exercises	53	
3	Limits of Sequences and Filters			
	3.1	Closure and Interior	55	
	3.2	Sequences	56	
	3.3	Filters and Convergence		
	3.4	Tychonoff's Theorem		
		3.4.1 Ultrafilters and Compactness	64	
		3.4.2 A Proof of Tychonoff's Theorem	68	
		3.4.3 A Little Set Theory	69	
		Exercises	71	
4	Cat	egorical Limits and Colimits	75	
	4.1	Diagrams Are Functors	75	
	4.2	Limits and Colimits	77	
	4.3	Examples	79	
		4.3.1 Terminal and Initial Objects	79	
		4.3.2 Products and Coproducts	80	
		4.3.3 Pullbacks and Pushouts	81	
		4.3.4 Inverse and Direct Limits	83	
		4.3.5 Equalizers and Coequalizers	85	
	4.4	Completeness and Cocompleteness	86	
		Exercises	88	

5	Adj	Adjunctions and the Compact-Open Topology			
	5.1	Adjunctions	92		
		5.1.1 The Unit and Counit of an Adjunction	93		
	5.2	Free-Forgetful Adjunction in Algebra	94		
	5.3	The Forgetful Functor $U: Top \to Set$ and Its Adjoints	96		
	5.4	Adjoint Functor Theorems	97		
	5.5	Compactifications	98		
		5.5.1 The One-Point Compactification	98		
		5.5.2 The Stone-Čech Compactification	99		
	5.6	The Exponential Topology	101		
		5.6.1 The Compact-Open Topology	104		
		5.6.2 The Theorems of Ascoli and Arzela	108		
		5.6.3 Enrich the Product-Hom Adjunction in Top	109		
	5.7	Compactly Generated Weakly Hausdorff Spaces	110		
		Exercises	114		
5	Path	ns, Loops, Cylinders, Suspensions,	115		
	6.1	Cylinder-Free Path Adjunction	116		
	6.2	The Fundamental Groupoid and Fundamental Group	118		
	6.3	The Categories of Pairs and Pointed Spaces	121		
	6.4	The Smash-Hom Adjunction	122		
	6.5	The Suspension-Loop Adjunction	124		
	6.6	Fibrations and Based Path Spaces	127		
		6.6.1 Mapping Path Space and Mapping Cylinder	129		
		6.6.2 Examples and Results	131		
		6.6.3 Applications of $\pi_1 S^1$	137		
	6.7	The Seifert van Kampen Theorem	139		
		6.7.1 Examples	141		
		Exercises	145		
	Glos	Glossary of Symbols			
	Bibl	Bibliography			
	Inde	Index			